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1. Outline

The field of computational chemistry is traditionally less well known by
applied mathematicians than other fields of the engineering sciences, such
as computational mechanics. Nevertheless, it is undoubtedly a rich source
of very difficult problems for numerical simulation, some of which are likely
to remain among the most challenging simulation tasks for years to come.
Examples are the complete and detailed simulation of protein folding, or
the description of the long time radiation damage of materials in nuclear
power plants.

Many of the difficult problems have already been tackled, with definite
success, by experts in computational chemistry. Thanks to their constant
effort and their ever-productive ideas, the field has made great progress
since its early days. The birth of quantum chemistry is commonly marked
by the publication by Heitler and London (1927) on the electronic struc-
ture of the hydrogen molecule. That of computational quantum chemistry
is fixed around 1950 with the first effective computations of molecular sys-
tems consisting of a few (say 5 to 20) electrons on the then newly created
computers. Fifty years later, contemporary methods and techniques allow
for the simulation of a broad spectrum of systems, ranging from molecules
of hundreds of electrons modelled by very precise quantum models, up to
samples of billions of particles modelled by molecular dynamics equations
with force fields parametrized in advance (on the basis of more precise com-
putations of smaller subsystems). These techniques are implemented in a
large variety of softwares, freely distributed or not, that have general pur-
poses or are dedicated to specific applications. Thanks to them, theoretical
computational chemistry has gained full recognition in the world of chem-
istry, a domain traditionally more experimentally oriented. The Nobel prize
recently awarded to Walter Kohn and John Pople testifies to this success:
see Kohn (1999).

In spite of this great success, some challenging issues remain open, mostly
related to the simulation of large systems over long times. New techniques
must be invented, otherwise it will not be possible to bridge the size and
time gaps up to most of the systems of practical interest (e.g., proteins,
nanosystems, crystalline materials). Such new ideas will certainly arise
among experts of the field. But they are also likely to come from math-
ematical contributions. In many respects, computational chemistry is still
an art, and relies upon a delicate mix of physical intuition, pragmatic clev-
erness, and practical know-how. Therefore progress is difficult, and slow.
For an applied mathematician, such a situation often indicates that the ex-
isting discretization techniques and solution procedures suffer from a lack
of numerical analysis, and this is indeed the case for computational chem-
istry. Some results on the numerical analysis have appeared in the past
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decade, but a lot remains to be done. We conjecture that a better theor-
etical knowledge of existing techniques will lead to their enhancement, and
will therefore improve their applicability, as demonstrated by the history of
scientific computing in the engineering sciences.

The purpose of the present article is to overview the numerical difficulties
encountered in computational chemistry, to show how they are solved within
the current state of the art, and to indicate the needs for further improve-
ments. Of course, whenever they exist, we will indicate the results of nu-
merical analysis that help to give a sound grounding for these techniques.
But most often the article will deal with descriptions of techniques rather
than with statements of theorems. We hope that this bias will stimulate
further works.

The article is organized in a rather narrative way, without any ordering
of scientific priority and/or importance. We begin with a description of
the models and the discretization techniques for small systems in a static
picture. Then, we progressively and (hopefully) pedagogically proceed to
the modelling and simulation of more difficult situations: larger systems,
systems in situ, time-dependent settings. Of course, as the size of the system
increases, the models need to be coarse-grained, otherwise they cannot be
tackled in practice. Therefore, the article also proceeds from the finest
models to the coarsest ones.

The present state-of-the-art survey focuses on issues in numerical analysis
for a readership familiar with such questions in other settings. A more
detailed description may be found in the book of Le Bris, ed. (2003), and
also, to a smaller extent, in the proceedings volume by Defranceschi and
Le Bris, eds (2000). For readers with a background in chemistry, we refer
to two survey articles, Defranceschi and Le Bris (1997) and Defranceschi
and Le Bris (1999), for an introduction to the mathematical and numerical
analysis. On the other hand, questions related to the mathematical analysis
of models are overviewed in Le Bris and Lions (2005).

2. A short introduction to modelling for molecular

simulation

2.1. A hierarchy of models

The domain called computational chemistry is traditionally more focused
on the accurate simulation of (rather) small systems in their finest details,
the term molecular simulation covering the other end of the spectrum. As
suggested by its title, the present survey is thus more concentrated on small
systems. Nevertheless, the current trend is increasingly to account for pre-
cise effects even in large-scale simulations. This can be done in one of the
following ways.
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• Sequentially by precomputing the parameters of a coarse model on
the basis of quantum simulations of subsystems: typical examples are
the computation of force fields for classical molecular dynamics (see
Section 5.2), or the fitting of pseudopotentials for large-scale calcula-
tions in the solid phase (see Section 4.1).

• In parallel by dividing the system under study into pieces that are
modelled at different levels, as for quantum mechanics/molecular mech-
anics (QM/MM) calculations: e.g., the active site of a protein is sim-
ulated at the quantum level to account for the change of electronic
structure, while the major part of the protein is modelled classically
in order to only simulate the changes in the conformation.

• Also in parallel by inserting on-the-fly evaluations of interactions by
quantum models in classical models, as is done in the ab initio molecu-
lar dynamics simulations (see Section 5.1).

In any case, computational chemistry irrigates molecular simulation in such
an intimate manner, and the two fields are so strongly entangled, that it
would not be giving a fair account to overview the former while ignoring
the latter. Consequently, some sections of the present survey are aimed
at giving at least a rough idea of simulations of very large systems (see
Sections 3.7, 5.2 and 5.3). By no means, these sections, of limited size and
scope, are intended to give a complete account. They rather aim only to
give a flavour of the field.

In computational chemistry, the most accurate approximations are called
ab initio approximations, for they involve no parameter except the univer-
sal constants of physics. They are only tractable for systems of small size.
In order to allow for the simulation of systems of larger size, some further
approximations are made, and some quantities are neglected or evaluated
on the basis of experimental measures. Then the methods are called semi-
empirical. Just to give one example, a typical quantity that can be inserted
in the calculations is an interatomic distance (a quantity that in principle is
an output of the computation, namely an optimization of the total energy of
the system), or the value of an overlap between two electronic orbitals (i.e.,
the value of some entries of the ‘mass matrix’ that again in principle should
be calculated; see Section 3.2 for the definition of orbitals). The computa-
tional task is then reduced, and larger systems can be addressed. Finally,
the models can be so much simplified that all the quantum information is
aggregated into force fields for classical mechanics, and one reaches the field
of molecular simulation, often subdivided into the domains called molecu-
lar mechanics and molecular dynamics. These domains are overwhelmingly
those that have percolated efficiently into other fields of sciences related to
chemistry, for instance biology and materials science.

Focusing on the ab initio models to start with, we notice that in addition,
it is natural to focus on the determination of the ground state (that is, the
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state of minimal energy) of the system under consideration. Indeed, in the
natural environment, systems are usually found in their most stable state.
Likewise any chemical system A reacts, spontaneously or with a compound
X, to give products B, C, . . . according to a chemical reaction if the vari-
ation of energy corresponds to a stabilization of the whole system. The
above thermodynamic consideration does not suffice, however, to explain
all the observations (kinetics comes into play), but the determination of the
ground state and of the ground state energy remains a preliminary calcula-
tion needed before turning to other questions in computational chemistry:
calculation of excited states, linear or nonlinear response theory, etc. The
latter questions will not be addressed here and we refer to the bibliography.

Before getting to the heart of the matter, let us recall the orders of mag-
nitude for the objects we will be manipulating henceforth, as they are rather
unusual. The typical size of the electronic cloud of an isolated atom is the
Angström (10−10 m). The size of the nucleus embedded therein is 10−15 m.
The weight of an atom is of the order of 10−26 kg. Regarding the time-scale,
the typical vibration period of a molecular bond is the femtosecond (10−15 s),
while the characteristic relaxation time for an electron is 10−18 s. Con-
sequently, computational chemistry concerns the behaviour of very small
and very light systems over very short time frames.

An introduction to all the quantum models we will deal with can be read
in Levine (1991), for example, while the basics of quantum mechanics are
recalled in McWeeny (1992). The main mathematical tools for the standard
(linear) analysis with an emphasis on physics are contained in Blanchard
and Bruning (1982), Cycon, Froese, Kirsch and Simon (1987), Gustafson
and Sigal (2003), Reed and Simon (1975), Schechter (1981), Thirring (1983).
In addition, the series of Lipkowitz and Boyd, eds (1995–) periodically pub-
lishes state-of-the-art surveys by experts in chemistry. We shall give more
specific references later.

2.2. Standard ab initio models for molecular systems

In most situations in chemistry, it is legitimate to consider the nuclei as
classical objects, and as point-like particles with charges (z1, . . . , zM ) at
positions (x̄1, . . . , x̄M ), while treating the electrons as quantum particles.
This is the so-called Born–Oppenheimer approximation. In view of this
approximation, the determination of the ground state structure of a mo-
lecular system consisting of M nuclei and N electrons amounts to solving
the following two nested minimization problems:

inf
(x̄1,...,x̄M )∈R3M

{
W (x̄1, . . . , x̄M ) = U(x̄1, . . . , x̄M ) +

∑

1≤k<l≤M

zk zl

|x̄k − x̄l|

}
,

(2.1)
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where

U(x̄1, . . . , x̄M ) = inf
{
〈ψe, H

(x̄1,...,x̄M )
e ψe〉, ψe ∈ He, ‖ψe‖L2 = 1

}
. (2.2)

The variational problem (2.2) determines the ground state electronic
structure when the nuclei are clamped at the positions (x̄1, . . . , x̄M ). We
concentrate on this problem, and will only briefly address the outer min-
imization loop (2.1) (that requires techniques of molecular mechanics) in
Section 3.8 below.

Problem (2.2) consists in finding the lowest eigenvalue of the N -body

Hamiltonian H
(x̄1,...,x̄M )
e , parametrized by the positions of the nuclei,

H(x̄1,...,x̄M )
e = −

N∑

i=1

1

2
∆xi

−
N∑

i=1

M∑

k=1

zk

|xi − x̄k|
+

∑

1≤i<j≤N

1

|xi − xj |
. (2.3)

We easily recognize in (2.3) the kinetic energy of the electrons, the attraction
electrostatic energy between the nuclei and the electrons, and the repulsion
electrostatic energy between the electrons, respectively.

In order to write H
(x̄1,...,x̄M )
e , we have chosen the atomic unit system,

commonly used in quantum chemistry:

me = 1, e = 1, � = 1,
1

4πǫ0
= 1,

where me, e, �, ǫ0, respectively, denote the electron mass, the element-
ary charge, the reduced Planck constant, and the dielectric permittivity of
vacuum.

On the other hand, the variational space in (2.2) is set to the following
subspace of L2(R3N ), the antisymmetrized tensor product

He =
N∧

i=1

H1(R3), (2.4)

in order to ensure that the kinetic energy term is finite.1 The antisymmetry
requirement comes from the Pauli exclusion principle that states that the
electronic wavefunction indeed needs to be antisymmetric with respect to
any permutation of the electrons.

The Euler–Lagrange equation of the minimization problem (2.2) is the
celebrated Schrödinger equation,

H(x̄1,...,x̄M )
e ψe = Eeψe, (2.5)

1 Here and below, for clarity of exposition, we omit the spin variable, which has of
course a huge practical importance. The introduction of the spin in the models and
techniques we shall describe in this review is not conceptually difficult, but may give
rise to substantial additional technicalities. Again for simplicity, we also assume that
the wavefunctions are real-valued.
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with E the lowest possible eigenvalue of the self-adjoint operator H
(x̄1,...,x̄M )
e

on He, in fact equal to U(x̄1, . . . , x̄M ) given by (2.2).
Unfortunately, for almost all problems of interest, the treatment of the

minimization problem (2.2) or alternatively that of equations (2.5) is at
the present time essentially impossible, owing to the huge size of the Hil-
bert space He. The only techniques that are indeed tractable at this level
are mostly stochastic-like techniques. One class of such methods is called
variational Monte Carlo and consists in evaluating the multidimensional
integrals

〈ψe, H
(x̄1,...,x̄M )
e ψe〉

with adequate sampling techniques.2 The minimization in (2.2) is then
performed by standard tools. We refer, for example, to the chapter by
W. Lester in Le Bris, ed. (2003). Another approach, not well developed in
the world of chemistry3 but very promising according to Lions (1996) in
view of its success in other fields such as financial mathematics, consists in
considering the time-dependent parabolic equation

∂ψe

∂t
+ Heψe = 0, (2.6)

and noticing that, as t goes to infinity,

1

t
Log
∣∣ψe(t, x)

∣∣ =
1

t
Log
∣∣e−tHe ψe(0, x)

∣∣ −→ U (defined by (2.2)).

(2.7)
Then ψe(t, x) is computed using the Feynman–Kac representation formula
for the solution to (2.6), which requires efficient sampling techniques.

Apart from these stochastic techniques designed to directly attack prob-
lem (2.5), there are the seemingly promising techniques of sparse tensor
products (also known as sparse grid methods) that are only emerging in
computational chemistry. Equation (2.5) is a partial differential equation
set on a vectorial space of high dimension, and most numerical techniques
cannot deal with dimensions larger than 6. Nevertheless, the sparse grid
approximations precisely aim at dealing with PDEs in high dimension: see
Griebel, Oswald and Schlekefer (1999), Bungartz and Griebel (2004) or
Schwab and von Petersdorff (2004). These techniques are definitely suc-
cessful in many contexts. In their present state, however, they require a
high regularity of the solution manipulated, in order to use sparse tensor

2 Regarding deterministic methods, see Bokanowski and Lemou (1998, 2001) for a tent-
ative adaptation (still in its early stage but apparently promising) of the fast multipole
method to these multidimensional integrals.

3 What is however used in chemistry is a simplified version of the approach, known as
the Diffusion Monte Carlo (DMC) method. We refer to Cancès, Jourdain and Lelièvre
(2004d) for a first mathematical study of this method.



370 C. Le Bris

product spaces without losing any information in comparison to the full
tensor product. Now, the functions of chemistry may be singular, notably
because of the cusp present in the interaction between electrons (the 1

|xi−xj |

terms in H
(x̄1,...,x̄M )
e ); we will come back to this point in Section 3.2. Nev-

ertheless, we are allowed to be optimistic, for two reasons. First, in order
to deal with cases when there is some lack of regularity, there are works
in progress by M. Griebel and colleagues that include the use of adapt-
ive sparse tensor products. Second, recent results by Yserentant (2003,
2004a, 2004b) indicate that the wavefunction solution to the (stationary)
Schrödinger equation (2.5) is more regular than expected (and in fact has
almost the regularity needed for state-of-the-art sparse tensor product tech-
niques). The sparse tensor product approximation should therefore work
nicely (see Garcke and Griebel (2000) for a first step). On the other hand,
it is worth mentioning that dealing with the antisymmetry requirement in
the context of sparse tensor products is still an issue (see however Hackbusch
(2001) for a possible track).

In addition to these emerging techniques that come from other domains
of the engineering sciences, an alternative way has appeared a long time
ago in the world of chemistry but is still under practical development. It
starts from the observation that the Hamiltonian (2.3) only involves one-
and two-electron terms, and therefore that the multidimensional integral

〈ψe, H
(x̄1,...,x̄M )
e ψe〉 can be expressed in terms of the second-order reduced

matrix

γ2(x, y, x′, y′) =

∫

R3(N−2)

ψe(x, y, x3, . . . , xN )ψe(x
′, y′, x3, . . . , xN ) dx3 · · ·dxN .

(2.8)
Next, the minimization problem, possibly under the form of its Euler–
Lagrange equation is reformulated, and treated numerically. This is un-
doubtedly an appealing idea, though still not mature enough (issues both
at the theoretical and at the practical levels remain unsolved). Regard-
ing what seems to be a promising track, we refer to Coleman and Yukalov
(2000) for the general context (see also many references by the first of these
two authors), to Zhao, Braams, Fukuda, Overton and Percus (2004) for an
instance of a direct minimization approach, and most of all to the works by
D. Mazziotti (see, e.g., Mazziotti (1998a, 1998b, 1999, 2004)), and C. Val-
demoro (see, e.g., Valdemoro, Tel and Perez-Romero (2000)).

At this stage, it seems to us important to emphasize that the main chal-
lenge for the future of computational chemistry is to directly attack the N -
body problem (2.5), or in a less ambitious manner, increasingly account for
the N -body interaction itself (and this begins with N = 2). The stochastic
approach, the use of sparse tensor products, the reduced density matrix ap-
proach described above, are instances of methods that go in this direction.
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Likewise, the introduction of many-electron wavefunctions in the basis sets
(see Section 3.3) and many very recent approaches emerging in computa-
tional chemistry are aimed at addressing this timely question. However, as
these methods are not yet mature, we will concentrate in the rest of this
state-of-the-art survey on methods that are to some extent better estab-
lished.

The most commonly used approximations for the minimization problem
(2.2) can be filed schematically into two main classes.

• Wavefunction methods, exemplified by the famous Hartree–Fock
model, aim to find an approximation of the ground state electronic
wavefunction, i.e., of the minimizer of (2.2). The variational space He

is reduced but the ‘exact’ form of the energy 〈ψe, H
(x̄1,...,x̄M )
e ψe〉 is kept.

Wavefunction methods are preferred by chemists who are interested in
the precise simulations of systems of small size, when computational
time is not the primary concern. We refer to the treatises of Hehre,
Radom, Schleyer and Pople (1986) and Szabo and Ostlund (1982) in
the chemistry literature. A famous program implementing Hartree–
Fock-type methods is the code GAUSSIAN.

• Density functional methods originate from density functional the-
ory. They are based on a reformulation of problem (2.2) in such a way
that the unknown function is the electronic density

ρ(x) = N

∫

R3(N−1)

|ψe(x, x2, . . . , xN )|2 dx2 · · · dxN

(i.e., a scalar field on R
3) rather than the wavefunction ψe (i.e., a

scalar field on R
3N ) as in the original problem (2.2). This is why these

methods are widely used by those of the chemists who are interested in
large molecular systems (e.g., biological systems) as well as most solid
state physicists. The fact that various parameters or even the very form
of some terms of the energy functional need to be arbitrarily chosen
or tuned for these methods makes the method particularly efficient for
some situations but is sometimes seen as a lack of rigour by chemists.
Some major references in the chemistry literature are March (1992),
Parr and Yang (1989) and Dreizler and Gross (1990).

2.3. Hartree–Fock-type models

The Hartree–Fock (HF) approximation consists in restricting in (2.2) the
variational space He to that of functions of variables (x1, . . . , xN ) ∈ R

3N

which can be written as a single determinant (i.e., an antisymmetrized
product) of N functions defined on R

3. Recall that, in the whole generality,
an arbitrary element of He is a converging infinite sum of such determinants.
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The Hartree–Fock approximation is therefore defined as

UHF (x̄1, . . . , x̄M ) = inf
{
〈ψe, Heψe〉 : ψe ∈ SN

}
, (2.9)

with

SN =

{
ψe =

1√
N !

det(φi(xj)) : φi ∈ H1(R3),

∫

R3

φi φj = δij , 1 ≤ i, j ≤ N

}
.

(2.10)

In quantum chemistry, a function of the form 1√
N !

det(φi(xj)) is called a

Slater determinant, and the φi are called molecular orbitals.
Apart from antisymmetry, the Hartree–Fock approximation heuristically

consists in observing that the probability density |ψ|2(x1, . . . , xN ) of find-
ing the N electrons at positions (x1, . . . , xN ) can be approximated by the
product |φ1|2(x1) · · · |φN |2(xN ). This is equivalent to considering the pos-
itions of the electrons as independent variables. This simplification causes
a certain loss of correlation between the positions of the electrons, and is
responsible for some error in the result obtained. Indeed, restricting the
minimization to some specific forms of functions in (2.9) provides us only
with an upper bound on the energy (2.2). On the other hand, the fact that
it is an upper bound and not only an approximation of the exact energy
is of course a substantial practical advantage of the method, in comparison
with other, nonvariational, approximations, such that those coming from
density functional theory (see Section 2.4 and below).

Explicitly, the computation of EHF (φ1, . . . , φN ) = 〈ψe, Heψe〉 for ψe in
SN leads to

IHF
N = inf

{
N∑

i=1

1

2

∫

R3

|∇φi|2 +

∫

R3

ρ V +
1

2

∫

R3

∫

R3

ρ(x) ρ(x′)
|x − x′| dxdx′

− 1

2

∫

R3

∫

R3

|τ(x, x′)|2
|x − x′| dxdx′ :

φi ∈ H1(R3),

∫

R3

φi φj = δij , 1 ≤ i, j ≤ N

}
, (2.11)

where

V (x) = −
M∑

k=1

zk

|x − x̄k|
, (2.12)

τ(x, x′) =
N∑

i=1

φi(x)φi(x
′), (2.13)

ρ(x) =
N∑

i=1

|φi(x)|2. (2.14)



Computational chemistry 373

The functions τ and ρ are respectively called the density matrix and the
density associated to the state ψe.

The Euler–Lagrange equations of (2.11) are the Hartree–Fock equations
{

FΦφi = λi φi,∫
R3 φiφj = δij ,

(2.15)

where FΦ is the Fock operator

FΦ = −1

2
∆−

M∑

k=1

zk

|x − x̄k(t)|
+

(
N∑

j=1

|φj |2 ⋆
1

|x|

)
−

N∑

j=1

(
·φj ⋆

1

|x|

)
φj , (2.16)

and the λi are the Lagrange multipliers of the orthonormality constraints
(owing to an invariance property, obvious on (2.10), of the HF energy
functional with respect to orthogonal (unitary) transformations of the φi,
the matrix of Lagrange multipliers may be diagonalized without loss of
generality).

The above Hartree–Fock model (2.11) has been extensively studied by
mathematicians, the two landmark papers being those by Lieb and Simon
(1977a) and Lions (1987), where the existence of a minimizer is demon-
strated under convenient assumptions, and the Euler–Lagrange equations
are thoroughly studied.

2.4. Density functional theory models

As announced above, the purpose of density functional theory, abbreviated
as DFT, is to replace the minimization problem (2.2) defined in terms of the
unknown wavefunction ψe by a minimization problem set on the unknown
density ρ.

To fulfil this goal, it suffices, for instance, to define

E(ρ) = inf

{
〈ψe,

(
−

N∑

i=1

1

2
∆xi

+
∑

1≤i<j≤N

1

|xi − xj |

)
ψe〉 :

ψe ∈ He, ‖ψe‖L2 = 1, ψe has density ρ

}
, (2.17)

on

IN =

{
ρ ≥ 0 :

√
ρ ∈ H1(R3),

∫

R3

ρ = N

}
, (2.18)

so that

U(x̄1, . . . , x̄M ) = inf

{
E(ρ) −

∫ ( M∑

k=1

zk

| · −x̄k|

)
ρ : ρ ∈ IN

}
. (2.19)
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The functional E is the density functional. However it is derived (the above
manner is one among many, all related to a paper by Hohenberg and Kohn
(1964) celebrated in quantum chemistry), finding an explicit expression for
E is an open problem. In practice, approximations of the density functional
have been developed, that rely on exact or very accurate evaluations of
different contributions to the energy for reference systems ‘close’ to the
system under study.

The best option for the approximation of the kinetic energy term is today
considered to be the model introduced by Kohn and Sham (1965). Their
idea was to take N non-interacting electrons as the reference system, and
made the DFT approach tractable. Under convenient assumptions, the
kinetic energy of such a system reads

TKS(ρ) = (2.20)

inf

{
1

2

N∑

i=1

∫

R3

|∇φi|2 : φi ∈ H1(R3),

∫

R3

φiφj = δij ,
N∑

i=1

|φi|2 = ρ

}
.

This expression is then chosen as an approximation of the kinetic energy
term for the system of interacting electrons under study and added to other
terms of electrostatic nature (attraction by the nuclei and inter-electronic
repulsion) to form the famous Kohn–Sham model

IKS
N = inf

{
1

2

N∑

i=1

∫

R3

|∇φi|2 +

∫
ρV +

1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y| dxdy + Exc(ρ) :

φi ∈ H1(R3),

∫

R3

φiφj = δij

}
, (2.21)

where ρ is a notation for
∑N

i=1 |φi|2. The functional Exc(ρ), called the
exchange term, is a correction term, accounting for the non-independence of
the electrons, for which approximations are in turn developed for different
situations. One of these approximations consists in using as a reference
system a uniform non-interacting electron gas. For such a system, Dirac
explicitly computed the exchange energy term

Exc(ρ) = −CD

∫

R3

ρ4/3, (2.22)

where CD = 3
4

(
3
π

)1/3
.

This approximation of the exchange term is one occurrence of the local
density approximation (LDA) for which Exc(ρ) =

∫
R3 F (ρ). Other more

precise expressions have also been developed.
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The Euler–Lagrange equations of the problem (2.21) are the Kohn–Sham
equations {

K(ρΦ)φi = λiφi,∫
R3 φiφj = δij ,

(2.23)

where ρΦ =
∑N

i=1 |φi|2,

K(ρΦ) = −1

2
∆ −

M∑

k=1

zk

| · −x̄k(t)|
+

(
N∑

i=1

|φi|2 ⋆
1

|x|

)
+ vxc(ρΦ), (2.24)

and vxc = ∂Exc(ρ)
∂ρ .

The comparison of the energy functionals in the Hartree–Fock case (2.11)
and in the Kohn–Sham case (2.21) (or that of their respective Euler–La-
grange equations (2.15) and (2.23)) reveals the global similarity between the
two approaches from a formal viewpoint. We will therefore concentrate on
the Hartree–Fock problem, and also indicate when important the necessary
modifications for treating the Kohn–Sham model.

Before we get to this, we would like to mention a variant of the Kohn–
Sham model, still in the category of density functional theory: the orbital-
free models. These models are more or less based upon a rather old idea,
indeed an ancestor of the DFT, namely the Thomas–Fermi theory. We
mention them here because from the standpoint of the implementation and
the algorithmic procedure, they exhibit significant differences to the other
approaches.

The idea underlying the TF theory is to use as a reference system the
uniform non-interacting electron gas (already mentioned above for the ap-
proximation of the exchange term, but this time used also for the kinetic
energy term). For a uniform non-interacting electron gas, one can indeed
compute analytically the kinetic energy

TTF (ρ) = CTF

∫

R3

ρ(x)5/3 dx, (2.25)

where CTF = 10
3 (3π2)2/3 denotes the Thomas–Fermi constant. In addition,

a correction term, obtained by studying perturbations generated by small
heterogeneities of the density, and due to von Weizsäcker, can be expressed
in terms of CW

∫
R3 |∇

√
ρ|2 and added to the kinetic energy. The minimiza-

tion problem obtained is thus of the form

inf

{
E(ρ), ρ ≥ 0,

√
ρ ∈ H1(R3),

∫

R3

ρ = N

}
. (2.26)



376 C. Le Bris

with

E(ρ) = CW

∫

R3

|∇√
ρ|2 + CTF

∫

R3

ρ5/3 +

∫

R3

ρV

+
1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y| dxdy − CD

∫

R3

ρ4/3.

In contrast to the Kohn–Sham theory, this model only involves the density
ρ. It is attacked by discretizing the density ρ on a grid in R

3, which is an ap-
proach completely different to that we describe below for models ultimately
involving wavefunctions. Of course, more elaborated energy functionals,
still functions of ρ, can be derived, but the spirit remains. After years
during which the Thomas–Fermi approach was considered out of date, and
definitely superseded by the Kohn–Sham approach, it seems that, for very
specific purposes (when at least some vague information on the electronic
structure must be inserted in simulations of systems of very large size), this
approach is seeing a revival in the form of orbital-free methods. We refer
to Carter (2000), for example. A mathematical analysis of a simple form of
the method is developed in Blanc and Cancès (2004).

Note that, on the other hand, from the academic (and in particular
mathematical) viewpoint, the Thomas–Fermi approach has been a constant
subject of interest. Major contributions include those by Lieb and Simon
(1977b) and review articles on all the aspects of these models include Jones
and Gunnarsson (1989), Spruch (1991) and Lieb (1983).

3. Discretization of molecular models

The Galerkin approximation procedure consists in approaching the infinite-
dimensional HF problem (2.11) by a finite-dimensional problem where the
HF energy is minimized over the set of molecular orbitals φi that can be
expanded with respect to a given finite basis set

{
χµ

}
1≤µ≤Nb

:

φi =

Nb∑

µ=1

Cµiχµ.

The ith column of the rectangular matrix C ∈ M(Nb, N) contains the Nb

coefficients in the basis
{
χµ

}
1≤µ≤Nb

of each of the N molecular orbitals φi

forming the desired Slater determinant. Letting S be the overlap matrix
with elements

Sµν =

∫

R3

χµχν , (3.1)

the constraints
∫

R3 φiφj = δij become

C∗SC = IN ,
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where IN denotes the N×N identity matrix. We next introduce the notation

hµν =
1

2

∫

R3

∇χµ · ∇χν +

∫

R3

V χµχν (3.2)

for the matrix of the core Hamiltonian h = −1
2∆ + V with respect to the

basis {χk}, together with

J(X)µν =

Nb∑

κ,λ=1

(µν|κλ)Xκλ, K(X)µν =

Nb∑

κ,λ=1

(µλ|νκ)Xκλ,

G(X)µν = J(X)µν − K(X)µν ,

where X can be any Nb × Nb matrix, and

(µν|κλ) =

∫

R3

∫

R3

χµ(x)χν(x)χκ(x′)χλ(x′)
|x − x′| dxdx′ (3.3)

are the so-called bi-electronic integrals. The HF problem then becomes

inf
{
EHF (CC∗) : C ∈ M(Nb, N), C∗SC = IN

}
, (3.4)

where

EHF (CC∗) = Trace(hCC∗) +
1

2
Trace(G(CC∗)CC∗).

Alternatively, the HF energy can be written in terms of the symmetric
Nb × Nb density matrix D = CC∗,

inf
{
EHF (D) : D ∈ PN

}
, (3.5)

where

PN =
{
D ∈ M(Nb, Nb) : DSD = D, Trace(SD) = N

}
. (3.6)

The associated Euler–Lagrange equations therefore read




F (D)C = SCΛ,

C∗SC = IN ,

D = CC∗,

(3.7)

where

F (D) = h + G(D)

denotes the Fock operator.
Using, as in the continuous case (2.16), the fact that the HF model (3.4)

is invariant with respect to the unitary transform C 
→ CU , the matrix
of Lagrange multipliers Λ can be diagonalized. In addition, it must be
emphasized at this stage that, for a minimizer of the infinite-dimensional
HF problem (2.11), the eigenvalues given by Λ are known to be the lowest N
eigenvalues of the Fock operator FΦ (see Lions (1987) and, for the question
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of the non-degeneracy of the Nth level, Bach, Lieb, Loss and Solovej (1994)).
This property is preserved in the finite-dimensional setting for a minimizer
C of (3.4),4 and it is said that C and D = CC∗ satisfy the Aufbau principle,
which is a principle for placing electrons within shells. This property will
be strongly exploited below in the design and the analysis of self-consistent
field (SCF) algorithms. Therefore the Euler–Lagrange equations read





F (D)C = SCE, E = Diag(ǫ1, ǫ2, . . . , ǫN )

C∗SC = IN

D = CC∗,

(3.8)

where ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫN are the lowest N eigenvalues of the Fock operator
F (D). In particular, still denoting by Φi the ith column of C,

F (D)Φi = ǫiSΦi. (3.9)

The examination of equations (3.8) gives us the opportunity to emphasize
the following key feature: all the models we deal with in the present article
are models at zero temperature. This is explicit in the Aufbau principle
stated above, as the lowest N eigenstates are occupied, while any higher
one is empty. In a picture at positive temperature, we introduce occupation
numbers αi ∈ [0, 1], not necessarily equal to zero or one, along each eigen-
state Φi, including indices i ≥ N +1. The coefficients αi are simultaneously
optimized, accounting for some entropy term. In fact, the free energy is
then minimized instead of the energy.

The Kohn–Sham models are discretized in a similar way to the HF one:

IKS = inf
{
EKS(CC∗) : C ∈ M(Nb, N), C∗SC = IN

}
(3.10)

with

EKS(D) = Trace(hD) + Trace(J(D)D) + Exc(D), (3.11)

Exc(D) denoting the exchange-correlation energy. If, for instance, an LDA
functional is used,

Exc(D) =

∫

R3

ρ(x) ǫLDA
xc (ρ(x)) dx, with ρ(x) = 2

Np∑

i=1

Dµνχµ(x)χν(x).

4 Actually, different variants of the HF problem exist, owing to the treatment of the
spins. We do not want to go into technicalities here and will assume that the property
under examination is always satisfied. Even in the absence of a mathematical proof for
some variants, the numerical practice shows that it is always true. In the same vein,
we shall assume below that this property is also satisfied by the KS problem, while
in this latter case it is even unclear at the infinite-dimensional level, however, again,
confirmed by experiment.
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Likewise, the KS equations read




FKS(D)C = SCE, E = Diag(ǫ1, ǫ2, . . . , ǫN )

C∗SC = INp

D = CC∗
(3.12)

with FKS(D) = h + J(D) +∇Exc(D) and ǫi the ith eigenvalue of FKS(D).
As announced above, we observe the formal similarity between problems
(3.8) and (3.12), which confirms the opportunity to concentrate mainly on
the HF problem in the present expository survey.

At this stage, let us also mention that solutions of




FC = SCE, E = Diag(ǫ1, ǫ2, . . . , ǫN )

C∗SC = IN

D = CC∗
(3.13)

(where F is a given matrix) are the same as the solutions in PN to the
equation

[F, D] = 0, (3.14)

where [·, ·] denotes the ‘commutator’ defined by [A, B] = ABS−SBA. Like-
wise, the solutions to (3.13) which satisfy in addition the Aufbau principle
are the same as the solutions to the problem

D = arg inf
{
Trace(FD′) : D′ ∈ PN

}
. (3.15)

If in addition there is a positive gap between the Nth and the (N + 1)th
eigenvalue of F (i.e., if ǫ1 ≤ · · · ≤ ǫN < ǫN+1 ≤ · · · ≤ ǫNb

), then the Aufbau
solutions D to (3.13) are also the solutions to

D = arg inf
{
Trace(FD′) : D′ ∈ P̃N

}
, (3.16)

where

P̃N =
{
D ∈ M(Nb, Nb) : DSD ≤ D, Trace(SD) = N

}
. (3.17)

This latter property will be briefly justified in Section 3.5 below.

3.1. Anticipating the numerical difficulties

The examination of the discrete form (3.5)–(3.6) of the Hartree–Fock min-
imization problem suffices to measure the main difficulties experienced in
the numerical approach.

The minimization is performed over the manifold of density matrices
(DSD = D) which is nonconvex (a good way to think of the problem is
to think of minimizing a function over a sphere). Whatever the properties
of the function to be minimized, the problem is likely to be difficult. It is
indeed. At the theoretical level, we of course lose the equivalence between
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the minimization viewpoint and the Euler–Lagrange viewpoint. A rigor-
ous approach would attack the minimization directly. Unfortunately, on
the one hand, the enormous number of critical points that have been ob-
served in practice rule out deterministic gradient algorithms, while on the
other hand zero-order methods such as stochastic methods and direct search
methods lead to an overwhelming number of function evaluations. There-
fore, contrary to rigour, we are obliged to attack the problem by solving the
Euler–Lagrange equations.5 This liberty with rigour will of course plague
the numerical analysis of existing approaches, as we will see in Section 3.5.
The somewhat surprising fact is that it works in practice, provided a number
of precautions are taken, such as a proper choice of an initial guess. Here
a point must be made. For a mathematician, trusting a lucky star in order
to obtain convergence to the global minimizer is of course both frustrating
and crazy, and we by no means pretend otherwise here. But a specificity of
computational chemistry comes into the picture. The calculation of a mo-
lecular system is rarely done from scratch. A computation with a coarser
model, or with the same model implemented more coarsely, has often been
done before. In some cases as well, the solution procedure is an inner loop
of a more global simulation: when the evolution of a molecular system is
simulated, the nuclei are moved incrementally through Newton’s equation,
and for each updated position of the set of nuclei a new calculation of the
electronic structure is performed (we shall see such methods in Section 5).
Then, the natural initial guess is the output of the previous computation.
All this contributes to render the Euler–Lagrange approach successful in
practice.

Of course, the chances of success are significantly increased by a design of
the solution algorithms for the Euler–Lagrange equations that is, in some
way or another, reminiscent of the fact that the solution to be determined is
not any critical point, but the global minimizer. And this is where a rigor-
ous numerical analysis reveals itself to be efficient. This is done by at least
requiring the Aufbau principle for the solution, but also in a more soph-
isticated manner, by elaborating algorithmic strategies based upon partial
minimizations. We will return to this in Section 3.5.

Having accepted that the Euler–Lagrange approach is the only tract-
able one, we can adopt either finite difference-type methods or variational
methods. The former are far less commonly used, unless for very spe-
cific purposes, and we refer to the literature for more details (see, e.g.,
the review article by Beck (2000) and also the chapters by J. L. Fattebert
and J. Chelikowski et al. in Le Bris, ed. (2003)). In computational chem-
istry, finite difference methods are often referred to as real-space methods.

5 Obviously, our statement describes the state of the art. New and efficient ideas to
attack the problem by minimization are welcome.
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Basically, they amount to discretizing the Euler–Lagrange equations on a
grid, using high-order schemes (typically order 4 or 6) for the Laplacian
operator associated with the kinetic energy term. We will only concen-
trate on the variational methods. A key issue will be the choice of the
variational space. We will again see below some specific features of com-
putational chemistry (mostly related to the approximation of singularities),
which often lead to ‘problem-dependent’ basis sets.

A second point on the Euler–Lagrange approach is to observe the algebraic
nature of these equations (3.7): they form a nonlinear eigenvalue problem.
Heuristically, the price to pay for making the linear eigenvalue problem
(2.5) tractable numerically is nonlinearity. Therefore iterations are required,
consisting more or less in freezing the operator and diagonalizing it, before
updating it. The computational task is first to assemble the matrix, and
next to diagonalize it. Here again, comments are in order.

Let us begin with the assembling step. In the Hartree–Fock setting, the
computational effort necessary to build the mean-field Hamiltonian matrix
(i.e., the Fock matrix) in a basis containing Nb elements a priori scales as
N4

b because of the calculation of the bielectronic integrals (3.3). For small
systems, this quartic scaling constitutes another peculiarity of computa-
tional chemistry, because constructing the matrix is there more expensive
than diagonalizing it, a fact that must of course be borne in mind for the
design of methods. For large systems, however, the scaling is much lower in
practice because the overlap of two atomic orbitals attached to two nuclei
far away from one another is negligible (we will introduce this particular
type of basis functions in Section 3.2, but for the time being it is enough to
know that these basis functions are attached to the nuclei, and remark that
integrals of type (3.3) are small when χµ and χν (resp. χκ and χλ) have
a small overlap). Various algorithms taking benefit of a priori estimates
of the integrals were developed in the late 1970s and the 1980s (see Gill
(1994) and the references therein); it is estimated that the scaling of these
algorithms is around N2.7

b in practice. The prefactor mainly depends on the
choice of the basis set (in fact of the degree of contraction of the Gaussian
atomic orbitals, i.e., of the parameter K in (3.22) below). For very large
molecules, a much better scaling (O(Nb)) can however be obtained with lin-
ear scaling algorithms based on the Fast Multipole Method by Greengard
and Rokhlin (1997), adapted to Coulomb and exchange matrix computa-
tions by M. Challacombe and coworkers: see Schwegler and Challacombe
(1997) and further works.

In the Kohn–Sham model, the third term in (3.11) is evaluated by numer-
ical integration on a grid, a computation that has complexity O(N3

b ). For
small molecular systems, the calculation is thus dominated by the compu-
tation of the second term in (3.11), and still scales in O(N4

b ) (theoretically).
On the other hand, for larger systems when the second term approximately
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scales in N2.7
b , the limiting evaluation is that of the third term, thus in

O(N3
b ). Note that linear scaling integration methods have been introduced

recently (see Scuseria (1999), Challacombe (2000) and references therein).
Let us turn to the diagonalization step. As mentioned above, it basically

scales as N3
b . It must be emphasized that stricto sensu the full diagonal-

ization is not needed as we only search6 for the lowest N eigenvectors and
eigenvalues of a matrix of size Nb × Nb (in view of the Aufbau principle).
However, for systems of reasonable size, the most efficient basis sets cur-
rently are atomic orbital basis sets for which Nb is typically a few times as
large as N , thus the question asked cannot be reduced to finding the first
few eigenvectors: the number of these eigenvectors might be half the size of
the matrix.7 The full diagonalization procedure is the most efficient choice,
and this is all the more true as it benefits from many rapid implementations
developed over the years for various applications of scientific computing. For
systems of reasonable size (say a few electrons), the cost of the Hartree–Fock
approximation is thus dominated by the N4

b cost of the construction of the
Fock matrix, while it progressively diminishes to a power of roughly 3 for
large systems, where the diagonalization step becomes the limiting process.

The above observation along which no complete diagonalization is stricto
sensu needed.8 is at the origin of a class of methods, dedicated to very
large systems, and called alternative to diagonalization methods They will
be overviewed in Section 3.7. Together with a rapid construction of the Fock
matrix (by FMM), these methods allow us to bring down the complexity to
a linear complexity (or slightly more than that) and make HF calculations
of about one thousand atoms feasible on today’s available workstations.

Let us mention to end this section that the N4
b complexity of the Hartree–

Fock method is by no means an upper bound on the complexity of methods
in the context of computational chemistry: the so-called post-Hartree–Fock
methods, such as configuration interaction methods, MCSCF methods (see
Section 3.8) and others have a computational complexity that can reach
N8

b or more. We now measure the practical limitation of such methods for
simulation of large systems, and this is one of the reasons of the success of
DFT-based methods for the simulation of such systems, the latter scaling
cubically (or less if the linear scaling methods mentioned above are em-
ployed). As there is no free lunch, this favourable scaling is obtained at the
price of approximations in the model itself. Such approximations are not so
rigorously founded, despite huge ongoing efforts, and their impact on the

6 And in fact this statement will be further weakened in the next paragraph.
7 The statement can be somewhat different for the plane waves basis set, for which the

matrix is far larger than the number of eigenvectors needed (say 10 to 100 times larger).
8 and in fact no diagonalization at all, as will be made clear in Section 3.7.
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final result is uneasy to measure. This shows the urgent need for further
theoretical contributions in the field.

3.2. Basis sets

We now consider the question of the determination of the {χµ}, i.e., that of
building an efficient finite-dimensional approximation of the space of wave-
functions to be considered for the determination of the electronic structure
of the molecular system under study.

It is natural, in order to figure out the difficulty of the approximation, to
look at the qualitative properties that are expected for the wavefunctions or
the electronic density. For this purpose, an illuminating step is to consider
the hydrogen-like atom, whose Hamiltonian reads

HZ = −1

2
∆ − Z

|x| . (3.18)

It is simple to see that the positive ground state of this Hamiltonian is

ψZ
1 (x) =

Z3/2

√
π

e−Z |x|, (3.19)

and from this, two crucial observations stem. First, the electronic dens-
ity of the molecular system is expected to have cusps at each nucleus of
the molecule, i.e., singularities in the first derivatives, as is the case for
(3.19). Second, the density is expected to decay exponentially fast at large
distance.9 From these two observations, it can be anticipated that general-
purpose basis sets, such as finite elements, will not be very well adapted to
the problem. This guess is confirmed by numerics. The singularity around
each nucleus typically asks for an extensive refinement of the mesh around
these points and the dimension of the discrete variational space correspond-
ingly increases, rendering the approach inefficient.10 Likewise, large dis-
tance effects are difficult to reproduce within such methods. This pleads for
dedicated (i.e., problem-dependent) basis sets, in the spirit of the compon-
ent mode synthesis or the reduced basis methods, advocated by A. Patera,
Y. Maday and collaborators in various domains of engineering sciences. We
refer to Almroth, Stern and Brogan (1978) and Noor and Peters (1980) for
pioneering works some decades ago, and Nguyen, Veroy and Patera (2005)

9 The properties of regularity and decay at infinity of the density of the solution to
the original Schrödinger equation (2.5) have been studied in Fournais, Hoffmann-
Ostenhof, Hoffmann-Ostenhof and Sorensen (2002a, 2002b, 2004) and Hoffmann-
Ostenhof, Hoffmann-Ostenhof and Sorensen (2001).

10 Many electronic structure calculations for large systems, and in particular periodic
ones, are done with the help of pseudopotentials that, in addition to other purposes,
aim to smear out the singularity at each nucleus; then the above discussion no longer
holds and basis sets such as plane waves are tractable: see Section 4.1.
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for an up-to-date survey and more references. We also refer to Section 5
for a work in progress in the present context. Actually, an ancestor of such
methods was introduced as early as the 1930s in computational chemistry.
As the molecular system consists of an assembly of atoms, the natural idea
then arose to choose as finite-dimensional space for the approximation the
vectorial space generated by some particular functions related to the prob-
lem, here a finite number of atomic orbitals (AO), i.e., basis functions used
to solve the same problem but in the atomic or hydrogen-like case (only
one nucleus). We speak of an LCAO approximation, the acronym LCAO
standing for linear combination of atomic orbitals.

In so doing, we expect that the size of the variational space will be kept
reasonably small, contrary to general-purpose basis sets. Atomic orbital
basis sets are thus built by associating to each atom A of the molecule
a collection

{
ξA
µ

}
1≤µ≤nA

of linearly independent functions of H1(R3), and

then by collecting all the ξA
µ for the different atoms of which the system is

composed.
At this stage, we are left with defining a good basis set for each atom

of the molecule. Again, it is useful to consider in detail the simple case of
the hydrogen-like ion, that is, a system modelled by the Hamiltonian (3.18)
consisting of a single electron bound by a single nucleus with charge Z.
This system indeed serves as a paradigm for the computations of more
complicated molecular systems.11

Standard general results of spectral theory and explicit calculations give
us a very detailed description of not only the ground state (3.19) but also
all of the eigenstates of the operator (3.18) that are the functions

ψZ
nlm(r, θ, φ) = Qnl(Zr)e−Zr/nY m

l (θ, φ), (3.20)

for n ∈ N, 0 ≤ l ≤ n − 1, −l ≤ m ≤ l, where Qnl denotes a polynomial
defined by an induction formula, and where the functions Y m

l (θ, φ) denote
the spherical harmonics, in turn defined by the first m derivatives of the
Legendre polynomial Pl. Such functions, called hydrogen-like orbitals when
used to form a basis set for a molecular calculation, provide high accuracy
results but through tedious computations. Therefore the idea very early
arose to modify them slightly, giving birth to Slater-type orbitals (STOs):
in (3.20), the polynomial Qnl is replaced by the monomial rl. These or-
bitals were introduced in Slater (1930) and widely used in the early days
of quantum chemistry. They were in turn superseded by another type of

11 An interesting point to make at this stage is that, since they are primarily based upon
a one-electron model, the basis sets we will now construct have no reason to be able
to adequately represent the electronic cusp, i.e., the singularity in the multielectronic

wavefunction due to the 1
|xi−xj |

singular term in the Hamiltonian. We will return to

this in the next section.
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basis functions. The reason is the overwhelming computational cost of the
bielectronic integrals (3.3)

(µν|κλ) =

∫

R3

∫

R3

χµ(x)χν(x)χκ(x′)χλ(x′)
|x − x′| dxdx′.

As there are N4
b such integrals, this calculation is a bottleneck for the whole

computation. Without any further simplification, it is hopeless to calculate
each of these N4

b integrals by an integration scheme over R
3 × R

3. The
computation time required would be prohibitive.

The groundbreaking idea by Boys (1950) that has suddenly changed the
whole landscape of quantum chemistry, was to replace, in the role of basis
functions, STOs by Gaussian-type orbitals (GTOs), which are Gaussian
functions or successive derivatives of Gaussian functions:

ξ(x, y, z) = C xnxynyznze−αr2
. (3.21)

The crucial advantage in considering such functions is that the calculation
of the overlap matrix (3.1), of the core Hamiltonian matrix (3.2), and, above
all, of the bielectronic integrals (3.3) can then be greatly simplified. Indeed,
because of some specific properties of Gaussian functions, the computations
of the six-dimensional integrals (3.3) are brought down to the numerical

computations of one-dimensional integrals of the form F (w) =
∫ 1
0 e−w s2

ds.
On the other hand, simply using GTOs would not allow for a correct

description of the shape of the molecular orbitals both near the nuclei and
at infinity, unless a large number of orbitals are employed, which is not
desired. The current state of the art of the LCAO approximation is thus
to use basis sets made of contracted Gaussian functions, which are linear
combinations of primitive Gaussian functions,

ξ(x, y, z) =

K∑

k=1

Ck xnk
xynk

yznk
z e−αkr2

, (3.22)

in which the Ck are optimized once and for all in order to accurately rep-
resent the cusps and the fall-off at infinity. These functions allow both for
easy calculation of the bielectronic integrals and for a correct description of
the qualitative properties of the wavefunctions. Somehow they constitute
the best compromise between STOs and GTOs.

Let us mention for completeness that an alternative to the use of con-
tracted Gaussian functions is that of fully numerical atomic orbitals, i.e.,
basis functions that are solely defined by their numerical values on a grid.
They are in general compactly supported in balls centred at the nuclei and
whose radii do not exceed a few atomic units. Both the Hamiltonian and
the overlap matrix are thus sparse, which is a clear advantage with a view
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to designing algorithmic approaches of low complexity. However, the use of
numerical orbitals makes the computation of integrals of the type

∫ ∫ (
ρ1 ⋆

1

|x|

)
ρ2

more time-consuming, for they must be carried out by solving a Poisson
equation on a large domain, with ad hoc boundary conditions, which are
not easy to define, and possibly singular functions ρ1 in the right-hand side
(typically think of ρ1 being a Dirac mass at each nucleus).

However they are derived, atomic orbital basis sets are used in most of the
gas or liquid phase calculations, for the determination of the static electronic
structure of the molecular system under study. With a surprisingly low
number of basis functions, typically a few times the number of electrons
(say 2–10), it is then possible to obtain very accurate results.

In some situations, however, the LCAO approximation is not adequate,
or at least causes significant problems. Indeed, a drawback of the LCAO
approximation lies precisely in the fact that the basis depends on the system
and is in some sense bound to it. When studying the evolution of a molecular
system where the nuclei move, or when studying the interaction of two
systems (or also a system embedded in a condensed phase), we are obliged
to modify the basis set, either by translating the basis functions according
to the motion of the nuclei, or respectively by adding new basis functions to
account for the presence of more than one single system (the latter situation
gives rise to basis set superposition error). In either of these situations, more
intrinsic basis sets are preferred. The most commonly used example is that
of plane waves. Then a much larger number of basis functions is needed,
but, as those are fixed, this can still prove to be more efficient than the
LCAO in the very particular settings mentioned above. We will come back
to them in Section 4.1.

3.3. Evaluation of the quality of the basis set

Let us recall some basics. When a space Xδ of finite dimension is fixed,
with a view to approximating the space X, the error between the exact
solution Φ0 of the problem set in infinite dimension and the solution Φδ

found numerically can be split into two components. One component of
this error comes from the fact that the best approximation we can get is
not Φ0, but the function πδΦ0 in Xδ that is as close as possible to Φ0. The
second component is due to the fact that the solution procedure will only
provide an approximation Φδ of πδΦ0 itself. Therefore we can (formally)
estimate the global error as follows:

‖Φ0 − Φδ‖ ≤ ‖Φ0 − πδΦ0‖ + ‖πδΦ0 − Φδ‖. (3.23)
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Clearly the first component of the error only depends on the quality of
the approximation space Xδ, that is to say, of the basis set of Xδ, while
the second component depends on the quality of the solution procedure
itself. The latter is said to be optimal if the ratio of the error between the
exact solution and the computed solution (second component) by the error
between the exact solution and the closest element in the discrete space
(first component) does not depend on the size of the basis set.

In the chemistry literature, the theoretical studies on the quality of the
basis set are numerous and have all concentrated on the first component of
the error, with a view not only to establishing the asymptotic convergence
but also to evaluating the rate of convergence of the best approximation
πδΦ0 in the given basis to Φ0, with respect to the size of the basis. Fur-
ther, in practice, the ratio between the convergence and the complexity of
the computations is of greater interest than the rate of convergence itself.
Therefore a large body of the chemistry literature has been developed along
these lines, particularly in order to enrich the basis sets and improve the
convergence rate.

For evaluating the quality of an atomic orbitals basis set, there is no
general approach, in contrast to the situation with finite elements or spectral
methods such as plane wave basis sets. The choice of an AO basis for solving
a given problem mostly relies upon some practical know-how. The lack of
rigorous understanding is a pity, because the output of the calculations
(typically some molecular property) might be very sensitive to the choice
of the basis set. The only available measures of the quality of the basis
set are obtained, in the chemistry literature, by choosing test cases, i.e.,
reference systems, where the solution of the exact Schrödinger equation may
be computed, mostly through numerical computations and, when possible,
with the help of an analytic calculation.

In the hydrogen-like atom, the system consists of a single electron, and
the problem amounts to finding the first eigenvalue and eigenfunction of
the Hamiltonian. Klahn and Bingel (1977) were the first in the chemistry
literature to investigate the conditions for the convergence to the exact ei-
genvalue. They established that the basis sets used conventionally12 were
complete for the H1 topology, thus yielding the asymptotic correctness of
the results when the size of the basis goes to infinity. As mentioned above,
the critical aspect, as far as the convergence to the exact wavefunction is
concerned, is the representation of the nuclear cusp. In the chemistry liter-
ature, it was shown heuristically by Hill (1985) that a rapid convergence is
only possible if the basis set describes correctly the singularities of the func-
tion to be expanded, a fact that can of course be understood and described
on the basis of rigorous, and simple, mathematical arguments.

12 See, however, the comments at the end of the section.
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Regarding the convergence rate, Klahn and Morgan, III (1984) have stud-
ied the convergence of expansions of the ground state of the H atom in
a simplified basis set consisting of Gaussian orbitals, and found that the
error of the energy goes as ∼ d−3/2 if d is the dimension of the basis, which
is a very slow convergence. Other studies then aimed at further studying,
theoretically (Klopper and Kutzelnigg 1986, Hill 1995) or experimentally
(Schmidt and Ruedenberg 1979, Feller and Ruedenberg 1979), this rate of
convergence and then improving it by introducing new basis functions.

One important point is that for practical purposes there are many ways to
measure the efficiency of a given basis set, depending on the output chosen:
e.g., the distance of the expansion to the exact function, the error of the
density at the position of the nucleus, the error of the energy value, etc.
In this direction we cite the series of works by Kutzelnigg (1989, 1994).

In the case of many-electron systems, the question of evaluating the
best approximation of the exact ground state wavefunction requires under-
standing an effect that has been omitted so far in this survey, namely the
effect on the convergence of basis expansions of the correlation cusp, created
by the 1

|xi−xj | interaction term. Schwartz (1962) was the first to study the

rate of convergence of the expansion of correlated wave functions in a one-
electron basis. He considered the helium ground state, treating the electron
interaction as a perturbation of the one-electron case. More recently Klahn
and Morgan, III (1984) and Hill (1985) studied the rate of convergence of
variational calculations in a general setting (for a review of this problem see
Morgan, III (1984)) while Kutzelnigg and Morgan, III (1992) presented a
detailed study of the solution of the Schrödinger equation near r12 = 0.

It is interesting to note that, with a view to circumventing the difficulty
of representing many-electron wavefunctions in terms of one-electron func-
tions, which inevitably lowers the rate of convergence of the expansion, the
idea arose to use variational trial wave functions that depend explicitly on
the interelectronic distances |xi − xj |, and allow us to describe the correla-
tion cusp correctly. Hylleraas (1929) initiated the approach with an accurate
calculation of the ground state energy of He-like ions using some function
Ψ(x1, x2, |x1 − x2|) with only a small number of parameters. Further works
are those of Kinoshita (1957), Pekeris (1958), James and Coolidge (1933),
Kolos and Rychlewski (1993), for instance. More recently some progress has
been achieved for 3- and 4-electron atoms by Kleindienst and collaborators:
see, e.g., Luchow and Kleindienst (1994). The feasibility of the approach
for a higher number of electrons is an open issue. Note that, of course, for
systems of more than 3 electrons, the coalescence of three particles has to be
studied. This is done by the so-called Fock expansion: see Fock (1958) and,
e.g., Peterson, Wilson, Woon and Dunning, Jr. (1997). It is important to
note that these studies certainly need to be complemented on the rigorous
mathematical side.
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As a conclusion to this section, we would like to point out that atomic
orbital basis sets in their contemporary implementation remain the basis sets
of choice for electronic structure calculations of small systems. They give
an impressive accuracy for a surprisingly small size of the basis. Therefore
we believe that the field would definitely benefit from further mathematical
studies. One reason is that there is room for improvement in many of the
proofs mentioned above, in particular because they sometimes do not apply
to the basis sets actually used in practice but rather to an idealized version of
them (for instance, exponents in the Gaussian functions are allowed to vary
arbitrarily, or contracted Gaussian functions are not addressed). A second
reason for this is precisely the incredible efficiency of the atomic orbital
basis sets: convergence is obtained long before the asymptotic regime. To
some extent, the asymptotic analysis described above is indeed useful for
the sake of rigour and as a first step, but not sufficient for shedding light on
the practice.

3.4. Convergence analysis

Let us consider now πδΦ0 as being the best fit of Φ0 by elements of the
discrete space Xδ. The question is now to evaluate ‖πδΦ0 − Φδ‖, i.e., the
second error term in (3.23). No study in the chemistry literature deals
with this question. In the mathematical literature, the question has been
addressed by a series of works by Y. Maday and G. Turinici. The following
lines are based upon their work.

Above all, some particular precautions have to be taken before evaluat-
ing this norm. Owing to the invariance of the HF energy with respect to
orthogonal (or unitary) transforms, the error between any two Slater de-
terminants Ψ1 and Ψ2 cannot be evaluated näıvely. We need to introduce
distances of the type

‖Ψ1 − Ψ2‖ = inf{‖UΨ1 − Ψ2‖[L2(R3)]N : U ∈ U(N)},
where U(N) represents the set of all unitary N × N matrices. In the same
spirit, Maday and Turinici (2003) have introduced, for any Φ ∈ [H1(R3)]N ,
the decomposition

[H1(R3)]N = AΦ ⊕ SΦ ⊕ Φ⊥⊥,

where

AΦ = {CΦ : C ∈ R
N×N , C⋆ = −C},

SΦ = {SΦ : S ∈ R
N×N , S⋆ = S},

Φ⊥⊥ = {Ψ = (ψi)
N
i=1 ∈ [H1(R3)]N : 〈ψi, φj〉 = 0; i, j = 1, . . . , N}.

Applying this to Ψ−Φ, with Φ and Ψ in [H1(R3)]N satisfying 〈φi, φj〉 = δij ,
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〈ψi, ψj〉 = δij , we thus have the decomposition

Ψ = Φ + CΦ + SΦ + W, W ∈ Φ⊥⊥. (3.24)

Generally, it can be established that, up to an adequate orthogonal trans-
form, C may be set to zero, and that the symmetric part SΦ is not the main
part of the decomposition (when Ψ−Φ is presumably small) as there exist
constants C1, C2 depending only on N such that

‖SΦ‖[L2(R3)]N ≤ C1‖Ψ − Φ‖2
L2(R3))N , (3.25)

‖SΦ‖[H1(R3)]N ≤ C2‖Ψ − Φ‖2
H‖Φ‖[H1(R3)]N . (3.26)

With the above preparatory work, it is possible to show that in a suffi-
ciently small neighbourhood of Φ0 (or πδΦ0), there exists a discrete solution
Φδ of the HF equation (unique in some weakened sense) and such that the
error between Φ0 and Φδ is of the same order as Φ0−πδΦ0. Again, it should
be emphasized that all these precautions originate from the fact that there
is no uniqueness known on the solution to the HF equations, and thus the
usual error estimates established in other contexts need to be adapted.

To prove this claim, the following energy functional parametrized by any
Φ ∈ [H1(R3)]N ∩ K, is introduced:

EΦ(ψ1, . . . , ψN ) = EHF (ψ1, . . . , ψN )+
N∑

i,j=1

〈FΦφi, φj〉
(
〈ψi, ψj〉−δij

)
, (3.27)

where FΦ denotes the Fock operator. Then, for an arbitrary Ψ decomposed
in Ψ = πδ(Φ0) + Sπδ(Φ0) + W in view of (3.24), we compute

EHF (Ψ) − EHF (πδ(Φ0)) =
1

2
D2EΦ0(W − Φ0 + πδ(Φ0), W − Φ0 + πδ(Φ0))

− 1

2
D2EΦ0(Φ0 − πδ(Φ0), Φ0 − πδ(Φ0))

+ O(‖W‖3 + ‖Φ0 − πδ(Φ0)‖3).

It suffices then to minimize this quantity with respect to W such that Ψ
remains in a small neighbourhood of πδ(Φ0), and this yields the correct Φδ.
It can be shown that such a minimizer is unique (due to the coercivity of
the Hessian D2EΦ0), and that

‖W‖ ≤ c‖Φ0 − πδΦ0‖,
thus proving the above claim on the order of the error.

At this stage, we pass from a priori considerations (the discrete solution
exists and if the discrete space is large enough we obtain an accurate result
(even optimal)) to a posteriori considerations: in a final stage where one
approximate solution has been computed, the need arises to validate the
result. A posteriori analysis and, more precisely, the definition of explicit
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lower and upper bounds for outputs was introduced in Maday, Patera and
Peraire (1999), and first analysed in Maday and Patera (2000).

Let us consider an approximation Φδ such that ‖Φ0 − Φδ‖[H1(R3)]N ≤ ε,
and perform the decomposition Φ0 − Φδ = SΦδ + W , where W belongs to
Φ⊥⊥

δ , ‖W‖[H1(R3)]N ≤ Cε and ‖SΦδ‖[H1(R3)]N ≤ Cε2. The evaluation of the
quality of the approximation is based upon the introduction of the following
problem:13 finding the reconstructed error Ŵ ∈ Φ⊥⊥

δ such that

D2EΦδ(Ŵ , Ψ) + DEΦδ(Ψ) = 0, for all Ψ ∈ Φ⊥⊥
δ , (3.28)

a problem that has, owing to some coercivity of D2EΦδ , a unique solution.
Then,

EHF (Φ0) = EHF (Φδ) −
1

2
D2EΦδ(Ŵ , Ŵ ) +

1

2
D2EΦδ(W − Ŵ , W − Ŵ )

+ O(ε3)

For sufficiently small ε, this yields

EHF (Φδ) ≥ EHF (Φ0) ≥ EHF (Φδ) − D2EΦδ(Ŵ , Ŵ ), (3.29)

the left-hand side holding true because a variational approximation always
provides a discrete minimum that is larger than the global one. This
provides an explicit upper and lower bound on the Hartree–Fock energy.
This bound is effective in the sense that it has been proved in Maday and
Turinici (2003) that there exists a constant such that

‖Ŵ‖[H1(R3)]N ≤ c‖W‖[H1(R3)]N , (3.30)

so that the width of the bound is small and of the same order as

‖EHF (Φδ) − EHF (Φ0)‖[H1(R3)]N .

The estimate (3.29) therefore provides on the solution Φδ found numer-
ically an a posteriori estimate, both rigorous mathematically and tractable
in practice. The estimate can serve as an evaluation of the quality of the
basis set employed, and, possibly, indicates the need for an enlargement
of this basis set. The procedure was implemented and successfully tested
some years ago in an academic code for electronic structure calculations. It
seems, however, not to be used today in any widely distributed software in
the field.

A corollary of the above technique is the following: Ŵ can actually be
shown to be very close to the actual (main part of) the error W , so that an
improvement on the solution Φδ can be proposed by setting

Φ̃δ = Φδ + ŜΦδ + Ŵ , (3.31)

13 Note that this computation involves a direct problem and not an eigenvalue problem.
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where ŜΦδ ∈ SΦδ
and ‖ŜΦδ‖ = O(ε2). This justifies the name reconstructed

error for Ŵ . Correspondingly, a new evaluation EHF (Φ̃δ) of the energy
can be proposed. Actually, (3.31) can be re-interpreted as follows. It yields
the same improvement Φ̃δ of Φδ as that obtained by performing one step
of a Newton algorithm on EHF (eCΦδ) where C is a matrix subject to some
constraints.

3.5. SCF cycles

We now concentrate on the strategy to solve the discretized Hartree–Fock
equations (3.8). This solution procedure provides the approximation Φδ

in (3.23). There lies the third type of numerical analysis involved, after
that of Section 3.2 and that of Section 3.3: the speed of convergence of the
algorithm toward the solution Φδ needs to be evaluated.

The first class of algorithms we report on is that of self-consistent field
(SCF) algorithms, i.e., iterations of the form




F̃kCk+1 = SCk+1Ek+1, Ek+1 = Diag(ǫk+1
1 , . . . , ǫk+1

N )

C∗
k+1SCk+1 = IN

Dk+1 = Ck+1C
∗
k+1.

(3.32)

Here, ǫk+1
1 ≤ ǫk+1

2 ≤ · · · ≤ ǫk+1
N are the smallest N eigenvalues of the linear

generalized eigenvalue problem

F̃kφ = ǫ Sφ,

and Ck+1 contains the corresponding N orthonormal eigenvectors. The

expression of the current Fock matrix F̃k characterizes the algorithm. We
have, for instance,

F̃k = F (Dk)

for the simplest algorithm we shall see, but more sophisticated forms will be
examined. In spirit, these algorithms are more or less fixed-point iterations.
The hope is that Ck, Dk and F (Dk) converge, respectively to C, D and
F (D), so that we get from (3.32) a solution to (3.8) in the limit k −→ +∞.

For years, no mathematical analysis was available for the SCF algorithms,
however much used in practice. In the chemistry literature, convergence
successes and failures were reported, comparisons of rates of convergence
between algorithms were experimentally established, remedies and tricks
were given – all without any rigorous understanding. Examples of such
contributions are Schlegel and McDouall (1991), Seeger and Pople (1976),
Stanton (1981a), Starikov (1993), Zerner and Hehenberger (1979), Koutecký
and Bonacic (1971), Douady, Ellinger, Subra and Levy (1980), Natiello and
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Scuseria (1984), Fischer and Almlöf (1992) and Chaban, Schmidt and Gor-
don (1997). The first mathematical work appeared some years ago and
is due to Auchmuty and Wenyao Jia (1994), who studied the convergence
of a prototypical algorithm which is unfortunately not used in practice.
The situation recently evolved, both from the standpoint of numerical ana-
lysis and from that of the construction of more efficient strategies, with
the series of works by Cancès and Le Bris (2000a, 2000b), Cancès (2000,
2001), Kudin, Scuseria and Cancès (2002) and Cancès, Kudin, Scuseria and
Turinici (2003a), on which the following lines are based.

Before describing the algorithms and elaborating on their theoretical
properties, we need to make a few remarks.

First, the SCF algorithm (3.32) above needs to be well defined. This
requires there to be no ambiguity on the choice of Ck+1 and thus the Nth
eigenvalue, counted with multiplicity, should be nondegenerate: ǫk+1

N < ǫk+1
N+1

(which is true in the limit k → ∞, in view of a theoretical result mentioned
above). Actually, in order to be able to prove convergence, the following
slightly stronger property was introduced. An SCF algorithm of the form
(3.32) with initial guess D0 is said to be uniformly well posed (UWP) if
there exists some positive constant γ such that

for all k ∈ N, ǫk+1
N+1 ≥ ǫk+1

N + γ.

This property can be shown to be satisfied automatically at least for one
algorithm, namely the level-shifting algorithm we will study below. In prac-
tice, it seems to be largely satisfied for the algorithms examined below.

Second, recall that in the present context we look for the minimizer of
a nonconvex minimization problem by a solution procedure for the Euler–
Lagrange equations. Without uniqueness, the convergence of fixed point-like
iterations, and even more the convergence towards a global minimizer, are
likely to be impossible to establish. Therefore the notion of convergence
has to be weakened, making it more practical, but still interesting, in the
present context. In this spirit, an SCF algorithm of the form (3.32) is said to
numerically converge toward a solution to the HF equations if the sequence
(Dk) satisfies

(i) Dk+1 − Dk → 0,

(ii) [F (Dk), Dk] → 0,

the second condition of course being reminiscent of (3.14). Likewise, we shall
say it numerically converges toward an Aufbau solution to the HF equations
if (i) holds together with a condition stronger than (ii), namely

(iii) Trace(F (Dk)Dk) − inf
{
Trace(F (Dk)D) : D ∈ PN

}
→ 0.

Of course, in both cases, one should note that the convergence of Dk up to
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an extraction is not an issue, since the set PN defined in (3.6) is compact,
because of the finite-dimensional setting.14

The simplest fixed point algorithm was introduced by Roothaan (1951). It
is now obsolete, but it serves as a basis for more sophisticated algorithms,
and as an explanatory example for the numerical analysis. It consists in
setting Fk = F (Dk) in (3.32).

It was very early realized that the convergence properties of the Roothaan
algorithm are not satisfactory: it sometimes converges towards a solution
to the HF equations and frequently oscillates between two states, neither of
which are solutions to the HF equations. In addition, the behaviour may
depend on the basis set chosen. But anyway, surprisingly, no case other
than convergence or oscillation of the above type (say binary oscillations)
were observed.

This behaviour can be fully explained by introducing the auxiliary func-
tion

E(D, D′) = Trace(hD) + Trace(hD′) + Trace(G(D)D′),

and noting that the sequence of Dk generated by the Roothaan algorithm
is exactly that generated by the relaxation algorithm

D2k+1 = arg inf
{
E(D2k, D), D ∈ PN

}
,

D2k+2 = arg inf
{
E(D, D2k+1), D ∈ PN

}
.

The functional E, which decreases at each iteration of the relaxation proced-
ure, can therefore be interpreted as a Lyapunov functional of the Roothaan
algorithm. This basic remark is the foundation of the proof of the following
result.

Theorem 1. Let D0 ∈ PN be such that the Roothaan algorithm with ini-
tial guess D0 is UWP. Then the sequence (DRth

k ) generated by the Roothaan
algorithm either numerically converges toward an Aufbau solution to the HF
equations, or oscillates between two states, none of them being an Aufbau
solution to the HF equations. In the latter case, (DRth

2k , DRth
2k+1) converges

to (D, D′), D �= D′, where
{

F (D′)C = SCE

F (D)C ′ = SC ′E′,

together with the other obvious constraints.

14 Actually, we can extend the above definitions, and most of the results and proofs will be
given below, to an infinite-dimensional setting. This is useful additional information,
particularly when we want to assess the impact of the increase of the basis set on the
convergence issues. We refer to the bibliography.
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Proof. The proof goes by proving that

E(DRth
k+1, D

Rth
k+2) +

γ

2
‖DRth

k+2 − DRth
k ‖2 ≤ E(DRth

k , DRth
k+1),

thus
∑

k∈N
‖DRth

k+2 − DRth
k ‖2 < +∞, which implies in particular that

DRth
k+2 − DRth

k −→ 0.

Now, either DRth
k+1−DRth

k converges to zero or it does not. The examination
of each case allows us to conclude the alternative stated in the theorem.

A first attempt to stabilize the Roothaan algorithm is the level-shifting
algorithm due to Saunders and Hillier (1973). It consists in setting

F̃k = F (Dk) − bDk,

in (3.32), where b is some sufficiently large positive constant.
Then oscillations disappear, and the algorithm always converges. How-

ever, the level-shift parameters b which guarantee convergence are large, so
that convergence is very slow, and often the algorithm converges to critical
points which do not satisfy the Aufbau principle and are not even local
minimizers.

Again, this algorithm can be re-interpreted in a standard way. In view of
the analysis of the Roothaan algorithm, it is natural to introduce a simple
penalty functional b‖D − D′‖2, where b is a positive constant and where
‖ · ‖ denotes the Hilbert–Schmidt norm, in order to enforce D = D′ in the
limit and thus to obtain a solution of the Euler–Lagrange equation. The
relaxation algorithm associated with the minimization problem

inf
{
Eb(D, D′), (D, D′) ∈ PN × PN

}
,

where

Eb(D, D′) = Trace(hD) + Trace(hD′) + Trace(G(D)D′) + b ‖D − D′‖2

is exactly the level-shifting algorithm with shift parameter b. Then we have
the following.

Theorem 2. For sufficiently large b, the level-shifting algorithm is UWP.
The energy EHF (Db

k) of the kth iterate Db
k decreases toward some stationary

value of EHF and the sequence (Db
k) numerically converges toward a solution

to the HF equations.

Proof. The proof follows the same lines as that of Theorem 1, and relies
upon the inequality

EHF (Db
k+1) +

b

2
‖Db

k+1 − Db
k‖2 ≤ EHF (Db

k).

See Cancès (2000) for the details.
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With a view to both enforcing and accelerating the convergence of the
iterations, the direct inversion in the iterated subspace (DIIS) algorithm has
been introduced by Pulay (1982). It is still commonly used in calculations.
The basic idea of the algorithm is to make use of the fact that [F (D), D] =
0 is equivalent to the HF equations in order to insert damping into the
iterations. This is done by setting

F̃k = F (D̃k)

in (3.32), where

D̃k =
k∑

i=0

copt
i Di,

and
{
copt
i

}
= arg inf

{∥∥∥∥
k∑

i=0

ci[F (Di), Di]

∥∥∥∥
2

:

k∑

i=0

ci = 1

}
.

It turns out that the DIIS algorithm works extremely well: in many cases,
it typically converges in a dozen iterations. However, the DIIS algorithm
suffers from a qualitative drawback: it is not ensured that the Hartree–Fock
energy decreases throughout the iterations. In addition, there exist cases
where this algorithm does not converge.

Unfortunately, no numerical analysis on this algorithm is available to
date, and thus the convergence failures cannot be satisfactorily explained
and remedied. This, at least, has motivated the introduction of other al-
gorithms.

Relaxed constrained algorithms (RCAs) have been introduced in Cancès
and Le Bris (2000b) and Cancès (2000, 2001). They are based on the fol-

lowing remark: all the local minima of EHF (D) on P̃N defined in (3.17)
indeed belong to PN defined by (3.6), which amounts to saying that the
constraint DSD = D may be relaxed while keeping the same local minima.
Loosely speaking, this is simply due to a property of concavity of the HF
energy with respect to the norm of each of the φi (think again of the min-
imization of a concave functional on the unit ball and on the unit sphere,
respectively). Therefore, without loss of generality, we may transform the

HF problem into a minimization problem set on the convex set P̃N , for
which many more techniques are available (in particular, and this will be
the case here, we can damp the algorithm by using any convex combination
of previously computed iterates). Convergence is then easier to establish.

We will focus here on the simplest RCA, called the optimal damping

algorithm (ODA). It consists in setting F̃k = F (D̃k) where

D̃k = arg inf
{
EHF (D̃) : D̃ = (1 − λ)D̃k−1 + λDk, λ ∈ [0, 1]

}
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As EHF is a second-degree polynomial in the density matrix, the compu-
tation of D̃k only consists in minimizing a quadratic function of λ in [0, 1],
which can be done analytically.

In fact, one can again understand the ODA on the basis of a very simple
numerical analysis. Because of the Taylor expansion

EHF ((1 − λ)D̃k−1 + λD′) = EHF (D̃k−1) + λTrace(F (D̃k−1) · (D′ − D̃k−1))

+
λ2

2
Trace

(
G(D′ − D̃k−1) · (D′ − D̃k−1)

)
,

for any λ ∈ [0, 1], the direction Dk selected by the Aufbau principle, namely

Dk = arg inf
{
Trace(F (D̃k−1)D

′) : D′ ∈ PN

}
,

can be interpreted as the steepest descent direction, while the choice of the
damping parameter λ in the ODA is the optimal step along this direction.
Therefore the ODA is a representative of a standard descent algorithm in
this context.15,16 This observation underlies the following theorem.

Theorem 3. Let us consider an initial guess D0 ∈ PN such that the
optimal damping algorithm is UWP. Then,

(1) the sequence EHF (D̃k) of energies of the intermediate matrices D̃k

decreases toward a stationary value of the HF energy;

(2) the sequence (Dk) numerically converges toward an Aufbau solution
to the HF equations.

Proof. One may show that

EHF (D̃k+1) ≤ EHF (D̃k) − α‖Dk+1 − D̃k‖2

for some α > 0, which implies that

Dk+1 − D̃k −→ 0. (3.33)

As D̃k+1 ∈ [D̃k, Dk+1], it follows that D̃k+1 − D̃k −→ 0, and then that
Dk+1 − Dk −→ 0. The proof is then easy to complete.

15 In fact, pursuing the analogy, the algorithm known in computational chemistry as the
mixing algorithm, where eFk = F ( eDk) with eDk = (1 − α) eDk−1 + αDk and α is a fixed
damping parameter, can be recast as a steepest descent procedure with a fixed step,
which, naturally, performs rather poorly.

16 Then the following question arises: Since in other fields of optimization it is well known
that the gradient direction is not the best direction to take, why not take a more efficient
one? A practical answer to this question is that the big advantage of this direction is
that it is ‘easy’ to calculate, since it is that obtained by diagonalization, and quantum
chemistry codes use optimized diagonalization routines.
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Numerical tests show that

• the solution obtained by the ODA is always the same whatever the
initial guess chosen in the list of commonly used initial guesses (this
robustness is a very important property),

• the energy of the solution obtained by the ODA is always lower than
or equal to that of the solution obtained by any other method,

• the ODA always converges,

• the ODA is less demanding in terms of memory than, e.g., DIIS,

• however, the ODA, like any RCA available today, does not converge as
fast as the DIIS algorithm when the latter does converge, and proves
to be rather slow in the latest steps of the convergence.

The latter observation motivated the introduction by Kudin et al. (2002)
of the energy direct inversion in the iterative subspace (EDIIS) algorithm as
an improvement of the ODA for the latest steps. For the damping step, the
HF energy is, in the spirit of DIIS, minimized on the convex set generated
by all (or some of) the density matrices computed at the previous iterations:

D̃k = arg inf

{
EHF (D̃) : D̃ =

k∑

i=0

ciDi, 0 ≤ ci ≤ 1,
k∑

i=0

ci = 1

}
.

Since this is exactly the HF energy which is minimized, and not

∥∥∥∥
k∑

i=0

ci[F (Di), Di]

∥∥∥∥
2

,

the damping step does force convergence.
Let us mention that, for the KS problem, the same algorithms (Roothaan,

level-shifting, DIIS, RCA, ODA, EDIIS) can be applied. The main two
differences are, first, that there is no proof of convergence, and, second,
that relaxing the constraints DSD = D in the KS model modifies the model
itself and leads to the extended Kohn–Sham model. We refer the reader to
Cancès (2001).

3.6. Second-order methods

The SCF iterations are basically first-order methods, as shown by their in-
terpretation given above. In order to accelerate their convergence in the
latest steps, one can insert damping, as in the DIIS, ODA, or EDIIS al-
gorithms, or, and this is the purpose of the present section, one may resort
to second-order algorithms.

The first Newton-like algorithm for computing HF ground states is
due to Bacskay (1961). The basic idea is to make a change of variable
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in order to remove the constraints and use a standard Newton algorithm for
unconstrained optimization. The convenient parametrization of the mani-
fold PN used by Bacskay is the following: for any C ∈ M(Nb, Nb) such that
C∗SC = INb

,

PN =

{
C exp(A)D0 exp(−A)C∗ : D0 =

[
IN 0
0 0

]
,

A =

[
0 −A∗

vo

Avo 0

]
, Avo ∈ M(Nb − N, N)

}
,

where, in the language of chemistry, the subscript vo denotes the ‘virtually
occupied’ off-diagonal block of the matrix A. Let us now write

EC(Avo) = EHF (C exp(A)D0 exp(−A)C∗).

The problem now reads as the minimization of EC(Avo). Starting from some
reference matrix C, the Bacskay QC algorithm (QC standing for quadrat-
ically convergent) consists in applying to this unconstrained minimization
problem, one Newton step starting from Avo = 0, and next to update C. It
thus reads:





compute the solution Ak
vo

of the Newton equation ∇2ECk(0) · Avo + ∇ECk(0) = 0,

set Ck+1 = Ck exp(Ak) with Ak =
[

0 −Ak∗
vo

Ak
vo 0

]
.

A natural alternative to Bacskay QC is to use a Newton-like algorithm
for constrained optimization. We write down the optimality equations for
problem (3.8) and then solve them by Newton iterations. Unfortunately,
owing to the unitary invariance of the HF energy, the system of equations
obtained is not well posed, and some technical modifications are in order.
This gives rise to a variety of Newton-type algorithms. We refer to the
literature and in particular to Shepard (1993).

The computational costs of the various Newton-type algorithms are par-
ticularly high in the present context. Indeed, the construction of many
Fock matrices per step is needed, and we have noticed that this construc-
tion is especially costly. In order to lower the computational cost, various
attempts have been made to build quasi-Newton versions of the Bacskay
QC algorithm (see, for instance, Fischer and Almlöf (1992), Chaban et al.
(1997)), but we are not aware of any work on quasi-Newton methods for
solving the constrained optimization problem (3.4).

To conclude this section, we would like to mention that one of the most
recent and efficient combinations of a first-order algorithm in the earliest
steps of SCF iterations with a second-order algorithm in the latest step is
that proposed by Cancès et al. (2003a). The setting is that of a KS-type
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model: the initial value D0 of the second-order algorithm is the density
matrix output of the EDIIS algorithm. In the spirit of the Bacskay QC
algorithm, the manifold of density matrices is parametrized by

D = Ω




IN 0 0
0 Λ 0
0 0 0


Ω∗

with some matrices Ω and Λ that are updated at each iteration through
Ωk+1 = ΩkexpAk and Λk+1 = Λk + Mk. The matrix Ak, of particular form,
and the matrix Ωk are determined by performing one step of the Newton
algorithm for the minimization of

EKS


Ωk expA




IN 0 0
0 Λk + M 0
0 0 0


 exp (−A)Ω∗

k


.

We refer to Cancès et al. (2003a) for the details. More generally, we also
refer to Areshkin, Shenderova, Schall and Brenner (2003) for a recent survey
of SCF methods and techniques for their acceleration.

3.7. Diagonalization procedure: small and large size systems

In the previous section, we focused on the SCF cycles, i.e., the iterations on
the nonlinearity. At each cycle, the current mean-field Hamiltonian F̃k is
used to build a new density matrix on the basis of the Aufbau principle. This
in principle amounts to solving the minimization problem (3.15), that is,

inf
{
Trace(FD), DSD = D, Trace(SD) = N

}
, (3.34)

where F is frozen at the value F̃k. It has already been said that, typically,
for atomic orbitals basis sets, Nb is of the order of 2N to 10N (the matrix
F then being sparse owing to the localization of atomic orbitals), while for
plane wave basis sets, which will be mentioned in Section 4.1, Nb can be
one hundred times as large as N , and the matrix is dense.17

The direct approach to solving these problems is to diagonalize F . The
algorithms in use are standard algorithms, no specificity of computational
chemistry arising at this level. Nevertheless, this procedure has complexity
N3 (see, e.g., Demmel (1997)), and cannot be applied to systems of large
size. The limitation is all the more of concern as the diagonalization is the
inner loop of the SCF procedure, which may itself be one step of an outer

17 Notice, therefore, that when we speak of linear scaling algorithms below, it might be
quite different at the practical level to consider an algorithmic complexity w.r.t. N or
w.r.t. Nb in the case of plane waves basis sets, even if in the asymptotic regime the two
complexities are the same.
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loop. This is the case for calculations in the solid phase (when there are as
many equations as points in the reciprocal lattice – see Section 4.1), or for
geometry optimization routines (when the problem is parametrized by the
positions of nuclei – see Section 3.8), or for time-dependent simulations by
ab initio molecular dynamics (see Section 5.1).

The paradigm of linear scaling calculations has therefore arisen in the
past decade, with a view to designing procedures that would scale linearly
with respect to the size of the system. Linear scaling methods are founded
on the following simple remark: in fact, the solution of (3.34) requires the
projector onto the subspace generated by the eigenstates associated to the
lowest N eigenvalues, and not the eigenstates themselves. Diagonalization
can thus be avoided in principle, hence the name alternative to diagonal-
ization for such methods, which can significantly reduce the algorithmic
complexity, basically from N3 to N , at least in some cases. From the phys-
ical standpoint, some assumptions justify linear scaling methods, the most
important being locality of interactions: two regions of a large molecular
system that are very far away from one another only slightly interact.

The linear scaling methods can be schematically divided into three cat-
egories:

• decomposition methods,

• penalization approaches,

• non-variational approaches.

The decomposition methods rely on the divide and conquer paradigm.
Loosely speaking, the idea is to partition the molecular system into subsys-
tems, and solve iteratively the subproblems by fine schemes in parallel, and
the global problem by a coarse solver. Surprisingly, it seems that there is
no mature version of such methods in the context of computational chem-
istry as there is in other fields of scientific computing. Note that we have
in mind decomposition domain methods at the discrete level, but also to
a smaller extent methods at the pure algebraic level, in the vein of Schur
complement techniques. Even if, in the latter case, it could be possible to
apply generic methods, it seems that they have not percolated very much in
computational chemistry either. The state of the art in chemistry seems to
be at best a one-shot algorithm: computing the ‘partial’ density matrices,
and merging adequately the submatrices to build the global density mat-
rix. More sophisticated algorithms are currently being tested in Barrault,
Cancès, Hager and Le Bris (2004c).

Therefore we refer to the bibliography for the divide and conquer approach
and prefer now to concentrate on the last two categories. For the description
of the main representative methods in each category, we let the overlap
matrix S be the Identity, for simplicity, understanding that algorithms can
be adapted if this were not the case.
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In order to make alternatives to diagonalization practical, the problem
(3.34) is reformulated in such a way that the constraint DSD = D disap-
pears,18 and next an algorithm is constructed, which might scale cubically
in the whole generality, but scales linearly when F is sparse and when the
density matrix D to be determined is assumed to be sparse.19 This favour-
able scaling is obtained because the algorithm is deliberately constructed in
such a way that only a limited number of products of sparse matrices are
performed. Of course, in order to define the sparsity, some cut-off paramet-
ers have to be adequately tuned, on the basis of physical assumptions such
as that of locality, alluded to above.

The penalization methods consist in eliminating the constraint of idem-
potency by constructing an exact penalized functional (any local minimizer
to the constrained problem is a minimizer to the unconstrained one). Then
a standard algorithm of unconstrained numerical minimization, such as the
nonlinear conjugate gradient algorithm for instance, is performed on the
latter problem.

For this purpose, one idea is to penalize the constraint D2 = D in (3.34)
by using functionals of the type

Trace(FD) + Trace(Fg(D)) (3.35)

for some convenient function g. The simplest choice is g(D) = 3D2−2D3−
D, hence the Density Matrix Minimization method, due to Li, Nunes and
Vanderbilt (1993):

inf
{
Trace

(
(F − εF Id)(3D2 − 2D3)

)
: D ∈ MS(Nb)

}
. (3.36)

It can be shown that this problem has a unique local minimizer, although
the infimum is −∞. The solution of (3.34) is obtained by solving (3.36) with
a nonlinear conjugated gradient algorithm. For this purpose, it is necessary
that the initial guess of the conjugated gradient is in the ‘attraction basin’
of the local minimum. Despite the definitely ‘risky’ nature of this numerical
approach, it performs well in practice.

An alternative to the above techniques is provided by non-variational
approximations. They consist in approaching the solution D to the prob-
lem (3.34) as the implicit function

D = H(εF Id − F ),

where H denotes the Heaviside function (all states of energy lower than εF

are occupied, the other ones above εF being empty).

18 The constraint Trace(SD) = N fixing the number of electrons is easy to deal with since
it can be associated with one scalar Lagrange multiplier εF , called the Fermi level ,
determined iteratively by an outer loop; we therefore treat εF as known.

19 The latter assumption is in some sense an a posteriori assumption, and not easy to
analyse.
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A first option is to resort to the Fermi operator expansion (FOE), which
consists in approaching the Heaviside function H by a Chebyshev poly-
nomial approximation. Up to a renormalization, we may assume that the
Fermi level εF is zero and that the eigenvalues of F all lie in the range [−1, 1],
so that the minimizer D of (3.34) satisfies D = H(−F ). Decomposing H on
the range [−1, 1] into

H(−x) =
+∞∑

j=0

cjTj(x),

where Tj is the jth Chebyshev polynomial and (cj)0≤j≤+∞ are the Cheby-
shev coefficients, we obtain

D =
+∞∑

j=0

cjTj(F ).

The FOE method consists in truncating the above expansion to a given
order k which depends both on the spectral gap and on the required accuracy
(see Goedecker (1999), and Liang et al. (2003) for a recent improvement).
Note that the truncation is a very delicate issue, for which no analysis is
known, and that has a crucial impact on the quality of the result.

Note also that the computation of the truncated expansion

Dk =
k∑

j=0

cjTj(F )

is done by taking advantage of the recursion formula

Tj+1(F ) = 2FTj(F ) − Tj−1(F ), T0(F ) = INb
, T1(F ) = F,

which allows us to compute independently each column of the matrix and
makes the method easily parallelizable.

A second instance of a nonvariational approximation technique is provided
by the method of purification of the density matrix. This method was
introduced by Palser and Manopoulos (1998) following the earlier work
by McWeeny (1992). The idea is to remark that for x0 ∈] − 1/2, 3/2[
and f(x) = 3x2 − 2x3, the algorithm defined by the induction formula
xk+1 = f(xk) converges to H(1/2 − x0). Now, again up to a renormaliza-
tion of F , the minimizer D of (3.34) satisfies

D = H(1/2 − F ),

and thus the sequence defined by

D0 = F, Dk+1 = f(Dk) = 3D2
k − 2D3

k

converges toward D. This algorithm can be interpreted as the approxima-
tion of the Heaviside function by a polynomial, namely that defined by the
nth iteration of the function f (which is called the McWeeny purification
function).
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For more details and other linear scaling methods, we refer to the articles
of Ordejon, Drabold and Martin (1995), Clementi and Davis (1966), Jay,
Kim, Saad and Chelikowski (1999), Kohn (1996), Scuseria (1999), Shepard
(1993), Shao, Saravan, Head-Gordon and White (2003) and Head-Gordon,
Shao, Saravan and White (2003), and also to the survey articles of Daniels
and Scuseria (1999), Galli (2000), Goedecker (1999), Bowler et al. (1997),
Bowler and Gillan (1999) and Bowler, Miyazaki and Gillan (2002).

Let us, however, conclude this section with a necessarily schematic state of
the art for these linear scaling methods. Essentially, one may say that, when
employed with localized basis sets of limited size per atom, these methods
are remarkably efficient for the modelling of insulators, a physical situation
that corresponds to a large enough gap ǫN+1 − ǫN = γ > 0 between the
Nth eigenvalue of F and the following one (recall that such an assumption
also plays a role in the convergence of SCF iterations, as manifested by the
UWP property stated above). On the other hand, they experience the worst
difficulties when dealing with metallic systems (γ ≃ 0). For the latter, they
are clearly in a nonsatisfactory state and need to be further developed and
adapted. From the numerical standpoint, the difficulty of metallic systems
is twofold. First, the problem of finding the eigenvalues is ill-conditioned in
the sense that the eigenvalues for the Hamiltonian of such systems are very
close to one another. Second, the density matrix D for the ground state
is dense. The two difficulties together are an overwhelming task for the
current algorithms. Note an attempt by Barrault, Bencteux, Cancès and
Duwig (2004d) to develop deflation techniques in this setting in order to
artificially enlarge the gap γ and consequently enhance the efficiency of the
methods. However, definite conclusions about the efficiency of the approach
are yet to be obtained.

It is to be emphasized that the numerical analysis of the linear scaling
methods overviewed above that would account for cut-off rules and locality
assumptions, is not yet available. The efficiency of the different methods
has therefore only been investigated on a few benchmark calculations which
are far from reproducing all the situations met in practice. In addition, even
at the formal level, the interaction between linear scaling procedures for the
linear subproblems and the SCF iterations has not been investigated yet.

3.8. Additional issues

We conclude our survey of the methods for molecular systems by addressing
here a few additional topics.

Beyond Hartree–Fock

Many post-Hartree–Fock methods exist in the chemical literature. As the
Hartree–Fock approximation is a variational approximation of (2.2), that is,
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an approximation constructed by restricting the variational space to a smal-
ler one, most of its improvements consist in enlarging the variational space.

The multiconfiguration self-consistent field method (MCSCF) aims to
recover more generality on the wavefunction ψe by minimizing on sums
of determinants:

EK
N = inf

{
〈ψe, Heψe〉 : ψe =

∑

I={i1,...,iN}⊂{1,...,K}
cI

1√
N !

det (φi1 , . . . , φiN ),

φi ∈ H1(R3),

∫

R3

φiφj = δij ,
∑

I

c2
I = 1

}
, (3.37)

where K ≥ N is some fixed integer.
The mathematical knowledge on the MCSCF model is now at the level of

that on the HF model, owing to a recent work by Lewin (2004), following
prior works by Le Bris (1994) and Friesecke (2003).

The numerical practice consists, as in the Hartree–Fock case for which
(3.8) is attacked, in solving the Euler–Lagrange equations for (3.37), the
MCSCF equations, which take the form of the following system:

{((
−∆

2 + V
)
Γ + 2 WΦ

)
· Φ + Λ Φ = 0,

HΦ · c = β · c.
(3.38)

In (3.38), the first line translates the optimality of the wavefunctions Φi and
is in fact a system of K nonlinear PDEs involving the Lagrange multipliers
matrix Λ to account for the orthonormality constraints. The matrix Γ is
easily computed from the coefficients cI of the expansion appearing in (3.37)
while V is defined by (2.12) and WΦ denotes the interelectronic interaction
term, also easily obtained from the cI . On the other hand, the second line
translates the optimality of the coefficients cI , with the Lagrange multipli-
ers β to account for the normalization. The matrix HΦ is the

(
K
N

)
×
(
K
N

)

matrix with general term 〈HNΦI , ΦJ〉 with ΦI = 1√
N !

det (φi1 , . . . , φiN ) in

the notation of (3.37).
The recent work by Cancès, Galicher and Lewin (2004a) aims to solve

(3.38), particularly in order to rigorously define and efficiently compute
excited states in the MCSCF setting.

Relativistic models

In the case when the molecular system under study involves one or many
heavy atoms, the relativistic effects need to be accounted for, otherwise
erroneous conclusions, even at the qualitative level,20 can be drawn from
the computations.

20 such as, gold is not yellow
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The huge difference in the relativistic modelling is that the Laplacian
operator appearing in the Hamiltonian (2.3) has to be replaced by the Dirac
Hamiltonian,

Hc = −iα1
∂

∂x1
− iα2

∂

∂x2
− iα3

∂

∂x3
+ c2β, (3.39)

where c is the speed of light, while αk, k = 1, 2, 3, and β are 4× 4 matrices
depending on the Pauli matrices. The introduction of this Hamiltonian, by
Dirac, is motivated by the fact that H2

c needs to be equal to the operator
−c2∆+c4 which is the quantum analogue of the Hamiltonian of classical re-
lativity p2c2 + c4 (where p is the momentum operator). The Dirac Hamilto-
nian Hc acts on 4-spinors, i.e., wavefunctions valued in C

4. The crucial
point is that its spectrum σ(Hc) =] −∞,−c2] ∪ [c2, +∞[, contrary to that
of the Laplacian [0, +∞[, is not bounded from below. When inserted in the
modelling of an hydrogen-like atom, it therefore leads to a minimization
problem that is not well posed, and a good definition of the ground state
has to be introduced. Basically, the minimization has to be replaced by
adequate saddle-point methods. Some new minimax characterizations have
been established by Esteban and Séré (2002), Dolbeault, Esteban and Séré
(2000a), Desclaux et al. (2003), and have given rise to new algorithmic tech-
niques to compute the eigenfunctions and eigenvalues of the Dirac operator
in molecules: see Dolbeault, Esteban, Séré and Vanbreugel (2000b), Dol-
beault, Esteban and Séré (2003). Likewise, in the many-electron case where
models such as the Dirac–Fock model, introduced in Swirles (1935, 1936),
play the role of the Hartree–Fock model, adequate definitions of the ground
state need to be derived. Again, from the numerical viewpoint, an adequate
treatment has to be developed. After years of rather brutal techniques, the
situation has recently evolved toward more rigour, and also efficiency, with
the series of works by the authors cited above.

Molecular mechanics

As mentioned above, the search for the electronic ground state for a fixed
set of positions of nuclei might only be an inner calculation. The outer loop
consists in solving the minimization problem (2.1)

inf
(x̄1,...,x̄M )∈R3M

{
W (x̄1, . . . , x̄M ) = U(x̄1, . . . , x̄M ) +

∑

1≤k<l≤M

zk zl

|x̄k − x̄l|

}
.

that is a purely classical optimization problem in dimension 3N , up to trivial
invariance properties (translation and rigid rotation at least). Of course, the
potential U(x̄1, . . . , x̄M ) can be parametrized on the basis of precomputa-
tions performed with the ab initio models we have seen above, and this
gives rise to the field called molecular mechanics. This field is prominent
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in biology, say, where, for instance, stable conformations of protein must
be determined. From the computational viewpoint, the problem is that of
minimizing a parametrized function in a space of very high dimension, for
which billions of local minimizers are likely to exist. The relevant theory is
numerical optimization, or even combinatorial optimization, since in prac-
tice substructures are first optimized and then assembled combinatorially
to find (at least a good guess for) the most stable global structure.

Here we would like to concentrate on a somewhat different problem, that
of finding the optimal configuration of nuclei when the number of nuclei is
not so large but when the potential U(x̄1, . . . , x̄M ) is indeed that obtained
by some of the computations above, i.e., approximations of (2.2).

In most situations, except those when gradient-free (or direct search)
algorithms are utilized, the optimization algorithm, in order to be efficient,
needs to account for derivatives of U(x̄1, . . . , x̄M ) with respect to the x̄k.

The key point is that determining the gradient ∂U
∂x̄k

(or further derivatives)
only requires a small additional computational time. This is not the case
in other settings, where the computation of the derivative is generically
considered as many times more costly than the function evaluation itself.

To illustrate the situation, let us write (2.1)–(2.2) in the abstract form

inf
{
W (x) : x ∈ Ω

}
, W (x) = inf

{
E(x, φ) : φ ∈ H, g(x, φ) = 0

}
.

(3.40)
In this formal setting it is indeed easy to recognize x as the collection of co-
ordinates of the nuclei, φ as the electronic wavefunction, H as the variational
space, E(x, φ) as the energy functional depending both on the nuclear co-
ordinates and the electronic wavefunction, and g(x, φ) as the orthonormality
conditions on the molecular orbitals. We make the latter depend explicitly
on x as it is the case when problem (3.40) is considered at the discrete level
and when AO basis sets are used. When φ(x) denotes the ground state for
x (here assumed to be unique for simplicity), we may write formally

∂W

∂xi
(x) =

∂

∂xi
E(x, φ(x)) =

∂E

∂xi
(x, φ(x)) +

〈
∇φE(x, φ(x)),

∂φ

∂xi
(x)

〉
,

(3.41)
by the chain rule. Next, as φ(x) is a minimizer, it satisfies

∇φE(x, φ(x)) = dφg(x, φ(x))T · λ(x)

for some Lagrange multiplier λ(x). On the other hand, by differentiation of
the constraint g(x, φ(x)) = 0, we have

∂g

∂xi
(x, φ(x)) + dφg(x, φ(x)) · ∂φ

∂xi
(x) = 0.
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Thus (3.41) yields

∂W

∂xi
(x) =

∂E

∂xi
(x) −

〈
λ(x),

∂g

∂xi
(x, φ(x))

〉
.

The crucial point is that ∂φ
∂xi

(x) has been eliminated. Therefore, the gradient

of W can be directly computed from (x, φ(x), λ(x)) (that is to say, the
set of positions of nuclei considered, the electronic ground state, and the
Lagrange multipliers, i.e., the monoelectronic energies) without any further
calculations. This property, referred to as analytical derivatives, is also used
in the context of ab initio molecular dynamics in Section 5.1.

For the sake of completeness, let us mention that the existence of the
global minimizer of (2.1) has been theoretically investigated in a series of
works: Catto and Lions (1992, 1993a, 1993b, 1993c). While the existence
is theoretically proved in most academic cases, it is to be emphasized that
in the Hartree–Fock case it is still an open question, even for the simplest
diatomic molecular systems.

4. The condensed phase

4.1. The solid phase

In the case of a crystalline solid, the formal Hartree–Fock equations are
derived through Bloch’s theorem (see Ashcroft and Mermin (1976), Kittel
(1996)): all sums over j involved in the definitions (2.13)–(2.14) of τ and ρ
are replaced by sums over j and integrals over the Brillouin zone BZ, i.e.,
the Wigner–Seitz cell of the lattice R⋆ reciprocal to the physical lattice R.
The wave functions and energies, that are here in infinite (uncountable)
number, are labelled by j ∈ N

∗ as in the molecular case, and by k ∈ BZ, a
specificity of the crystalline solid phase. More precisely, setting

τ(x, x′) =
∑

j∈N

∫

BZ
φk

j (x)φk
j
∗
(x′)(εF − εk

j )+ dk, (4.1)

where the term (εF − εk
j )+ selects only the states with energy lower than

the Fermi energy εF , and defining Vtot to be the solution to
{
−∆Vtot = −4π

(∑
T∈R m(· + T ) − ρ

)
,

Vtot R-periodic,
(4.2)

where ρ(x) = τ(x, x) and m is the measure defining the nuclei in the prim-
itive unit cell, we may write down the Fock operator

Fφ = −1

2
∆φ + Vtotφ −

∫

R3

τ(x, x′)
|x − x′|φ(x′) dx′. (4.3)



Computational chemistry 409

The Hartree–Fock wavefunctions φk
j are then defined to be the solutions of





Fφk
j = εk

j φk
j ,

for all j ∈ N and k ∈ BZ, e−ikxφk
j (x) R-periodic,

∫
Q φk

j (x)φk′

j′ (x)∗ dx = δ(k − k′)δjj′ .

(4.4)

For a study of the rigorous foundation of this model, we refer to a series of
works initiated in Catto, Le Bris and Lions (1998) and more particularly to
Catto, Le Bris and Lions (2001).

For the Kohn–Sham model, the equations read




−1
2∆φk

j + Veffφk
j = εk

j φ
k
j , for all j, k,

Veff = Vtot(ρ) + vxc(ρ),

ρ =
∑

j

∫
BZ |φk

j |2(εF − εk
j )+ dk,

(4.5)

and are treated analogously to the Hartree–Fock case.
In principle, we need to solve an infinite number of Hartree–Fock equa-

tions, for system (4.4) is indeed an infinite collection of molecular-like Hart-
ree–Fock-type systems

Fφk
j = εk

j φ
k
j

indexed by the points k of the Brillouin zone. In practice, it turns out that,
fortunately, a limited number of points k is generally enough to obtain
accurate results. The general trend is that for metals many points (say
hundreds of points) are needed, while for insulators a few (or even one) k-
points yield realistic values: see Blanc (2000) for an introduction, and, e.g.,
Dovesi et al. (2000) for specific details. Regarding software, we may cite
the code CRYSTAL, based on Hartree–Fock-type models, while the code
ABINIT is based upon models from density functional theory.

Regarding the basis set used for developing the wavefunctions φk
j , a pecu-

liarity of the solid phase setting comes into play. Contrary to the molecular
case where, as explained above, GTO basis sets are the method of choice
(except for very specific applications), the periodicity of the solid phase
makes the choice of plane wave (PW) basis sets natural and simple.21 Not-
ably, they make the kinetic operator diagonal and FFT algorithms can be
systematically adopted. The disadvantage of using PWs is that the fine
oscillations of some of the orbitals (in fact the valence orbitals) near the
nuclei require a huge number of PWs to be described accurately. The latter
difficulty is in turn mostly circumvented by the introduction of a pseudo-
potential.

21 Note that a combination of GTO and PW functions to form a basis set presenting the
best compromise is also an option.
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The technique consists in

• eliminating the explicit consideration of the core states (i.e., in a classic
picture those corresponding to electrons orbiting close to the nucleus)
by freezing them and aggregating them with the nuclei, while treating
their effect upon the valence electrons almost exactly (those orbiting
far away),

• replacing the wavefunctions of the valence electrons by pseudowave-
functions (indeed generated by the diagonalization of an operator with
pseudopotential) that are less oscillating and more regular, so that the
size of the PW basis set needed for accuracy can be reduced.

Over the years, numerous pseudopotentials of increasingly better quality
have appeared and are now widely spread: see, e.g., Troullier and Mar-
tins (1990) and Vanderbilt (1990). One point is that there is no rigorous
foundation, and no mathematical or formal understanding of the deriva-
tion of a pseudopotential. Therefore the method lacks a theoretical found-
ation, a lack that translates into a problem of crucial practical interest,
that of transferability (a pseudopotential is definitely useful when it can be
used for different atomic arrangements). Current efforts in the mathem-
atics community are directed toward giving a sound base to the concept
of pseudopotential. In the chemistry literature, the reference that is the
most accessible to a mathematical audience, and that is the best attempt
to introduce a rigorous formalism in the development of pseudopotentials,
is Blöchl (1994).

4.2. The liquid phase

Most of the physical and chemical phenomena of interest in chemistry and
biology take place in the liquid phase (see Allen and Tildesley (1987) for
an introduction to the modelling issues) and it is well known from experi-
mental evidences that solvent effects play a crucial role in these processes.
Accounting for such effects is thus a main concern.

A natural idea is that of building a ‘supermolecule’ consisting of the solv-
ated molecule under study plus several neighbouring solvent molecules. It
seems that the additional work needed to treat the latter ones makes the
approach inefficient in most22 cases of practical interest. In addition it may
be remarked that long-range effects of the solute–solvent interaction are not
included in such an approach. Coupling a quantum model for the solvated
molecule with a solvation continuum model provides an economical, and

22 Not all cases: when the solvated molecule is already very large, and thus coarsely mod-
elled, the solvent molecules that need to be added are not so numerous, in comparison.
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actually more accurate, alternative. This consists in locating the solute mo-
lecule under study inside a cavity Ω, modelling a solvent excluding volume,
surrounded by a continuous medium modelling the solvent.

In the standard model, the continuous medium behaves as a homogeneous
isotropic dielectric of relative permittivity ǫs (ǫs > 1). The electrostatic in-
teractions between the charge distributions which compose the solute (point
nuclei and electronic cloud) are affected by the presence of the solvent: the
standard Coulomb potential 1

|x−y| , which is the Green kernel G(x − y) of

− 1
4π∆ in R

3 must be replaced by that of the operator − 1
4πdiv (ǫ∇·), with

ǫ(x) = 1 inside the cavity Ω and ǫ(x) = ǫs outside. Correspondingly, a
charge ρ creates a potential V solution to23

−div (ǫ(x)∇V (x)) = 4πρ(x). (4.6)

The various terms of the Hartree–Fock (respectively KS) energy functional
are changed correspondingly. Note, however, that in practice (with a view
to keeping the efficiency of the computations of bielectronic integrals in
vacuum) the exchange term is often left unchanged.

When the solvent is an ionic solution, equation (4.6) is replaced by the
linearized Poisson–Boltzmann equation

−div(ǫ(x)∇V (x)) + ǫ(x)κ2(x)V (x) = 4πρ(x) (4.7)

(with ǫ(x) = 1 and κ(x) = 0 inside the cavity Ω and ǫ(x) = ǫs > 1 and
κ(x) = κs > 0 outside), while for a liquid crystal, it keeps the form (4.6)
but the dielectric constant ǫ(x) is no longer a scalar but a 3× 3 anisotropic
symmetric tensor ǫ

=
(x).

In practice, equation (4.6) is most often solved by an integral equation
method. The equation is posed on the surface of Ω, called the molecular
surface. The approach necessitates efficient meshing techniques for this
molecular surface. We refer to Cancès, Le Bris, Mennucci and Tomasi (1999)
and Le Bris, ed. (2003) for details and extensions.

5. Time-dependent problems

Ideally, the determination of the evolution of a molecular system requires
the solution of the time-dependent Schrödinger equation,

i
∂

∂t
Ψ = H Ψ, (5.1)

23 Notice the analogy with the case of solids where the Coulomb potential is indeed
replaced by the Green kernel of the Laplacian, but with periodic boundary condition
on the unit cell, see (4.2). This gives a unified setting to all the models addressed here.
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where the wavefunction describes the state of the complete system (electrons
plus nuclei) and the Hamiltonian is also the complete one,

H = −
M∑

k=1

1

2 mk
∆x̄k

−
N∑

i=1

1

2
∆xi

−
N∑

i=1

M∑

k=1

zk

|xi − x̄k|

+
∑

1≤i<j≤N

1

|xi − xj |
+

∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
. (5.2)

Even when inserting in the above description the approximation that the
wavefunction is a product of the wavefunction of the electronic degrees of
freedom times that of the nuclear ones, this equation remains intractable for
any system consisting of more than a few particles. Indeed, equation (5.1) is
a time-dependent partial differential equation set on a vectorial space of high
dimension. Here again, the use of sparse grid techniques, already mentioned
in the static setting in Section 2.2, can be envisioned. Nevertheless, there
is again an issue about the regularity of the function manipulated. For
time-dependent equations, such a regularity is typically obtained by sup-
plying the equation with regular data (initial and/or boundary conditions),
or by using regularization properties of the equation itself, as is the case
for parabolic equations. Now, as mentioned above, the functions of chem-
istry may be singular, and the mixed parabolic/hyperbolic nature of the
Schrödinger equation makes the regularization properties very peculiar and
different from those of parabolic equations. Therefore it seems that further
efforts are needed to apply such techniques to the case of the Schrödinger
equation, at least as efficiently as in the parabolic case.

Fortunately, the solution of (5.1), which considers the nuclei as quantum
objects, is not needed in most applications, apart from very particular ones
issued from fundamental physics. An example of the latter is provided by the
emerging domain of laser control of molecular evolutions where light-matter
interactions are to be modelled in the most precise way. An introduction to
the physical modelling, as well as the mathematical and numerical challenges
of this field, has appeared in the recent books of Le Bris, ed. (2003) and
Bandrauk, Delfour and Le Bris, eds (2004). Other instances of applications
where the nuclei need to be modelled by quantum mechanics, along with
numerical approaches for this purpose, can be read in Worth and Robb
(2002).

For almost all of the applications in chemistry and biology, the nuclei
can be, as in the time-independent setting, treated as classical objects, and
the Schrödinger equation above thus simplifies into a system coupling the
Newton equation of motion for the positions x̄k(t) ∈ R

3 of the nuclei and
the Schrödinger equation for the electronic structure.

In turn, as is the case for the stationary problem, the Schrödinger equa-
tion ruling the evolution of the electrons cannot be treated without further
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approximations. One of them is the time-dependent Hartree–Fock approx-
imation, which is obtained by forcing the wave function ψe to evolve on the
manifold

A =

{
ψe(x1, . . . , xn) =

1√
N !

det(φi(xj)) : φi ∈ H1(R3),

∫

R3

φi · φj = δij

}

of He and in replacing the time-dependent Schrödinger equation for the evol-
ution of the electronic structure by the stationarity condition for the action

∫ T

0
〈ψe(t), (i∂tψe(t) − He(t)ψe(t))〉dt.

In so doing, we obtain the following mixed quantum/classical system ruling
the evolution of the complete molecular system (nuclei and electrons),




mk
d2x̄k

dt2
(t) = −∇x̄k

W (t; x̄1(t), . . . , x̄M (t)),

W (t; x̄1, . . . , x̄M ) = −∑M
k=1

∑N
i=1 zk

∫ |φi(t,x)|2
|x−x̄k| dx +

∑
1≤k<l≤M

zk zl

|x̄k−x̄l| ,

i∂φi

∂t = −1
2∆φi −

∑M
k=1

zk

|·−x̄k(t)|φi +
(∑N

j=1 |φj |2 ⋆ 1
|x|

)
φi

−∑N
j=1

(
φ∗

jφi ⋆ 1
|x|

)
φj ,

(5.3)

supplied with the initial condition x̄k(0) = x̄0
k,

dx̄k

dt (0) = v̄0
k, φi(0) = φ0

i . The
above system is a prototypical example of a non-adiabatic simulation. It was
proved to be well posed in Cancès and Le Bris (1999), a work that very much
relies on the previous important study by Chadam and Glassey (1975) in a
slightly different (uncoupled) setting. The simulation of this system is still a
demanding task, necessary in some situations such as collisions of molecular
systems. The practical bottleneck consists in the discrepancy between the
time-scale of the electronic motion (typically 10−18 s) and that of the nuclear
motion (typically 10−15 s).

Recent works developing numerical algorithms for the solution of quantum
dynamics equations as in the above systems are those of Jahnke and Lu-
bich (2003) and Jahnke (2003, 2004). Regarding the specific simulation
of the TDHF equations themselves, we refer to the new ideas related to
variational integrators developed in Lubich (2004) that deal with the time-
dependent multiconfiguration Hartree (not Hartree–Fock) equations, in the
vein of Section 3.8.

5.1. Ab initio molecular dynamics

Again, for most applications, the above setting can be further simplified.
Indeed, it can be considered, within a good level of approximation, that
the electrons stay in a well-defined energy surface. This surface, called the
Born–Oppenheimer energy surface, is parametrized by the set of positions
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of the nuclei, and is often the ground-state energy surface (and we shall
suppose it is henceforth). The system under consideration then reads





mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), . . . , x̄M (t)),

W (x̄1, . . . , x̄M ) = U(x̄1, . . . , x̄M ) +
∑

1≤k<l≤M
zk zl

|x̄k−x̄l| ,

U(x̄1, . . . , x̄M ) energy of the electronic degrees of freedom

evaluated in a given static model.

(5.4)

The main advantage of this setting is that the time-step for numerical integ-
ration of the dynamics can now be chosen of the same order of magnitude
as the characteristic evolution time of the nuclei rather than that of the
electrons. But, as will be seen shortly, each time-step is likely to be more
costly.

This approximation mainly relies on physical arguments: the character-
istic relaxation time of the electrons is so small with respect to that of
the nuclei that it can be considered that the electronic wavefunction reacts
adiabatically to a change in the position of the nuclei.

As far as applications are concerned, the adiabatic approximation turns
out to be valid for the simulation of physical properties (phase diagrams,
surface reconstruction, diffusion in alloys), as well as for the simulation of
most chemical reactions. Both theoretically and practically, however, huge
difficulties arise when the energy surfaces happen to cross each other for
a given particular set of positions of nuclei (see Hagedorn (1996), Teufel
(2003) for related mathematical works).

In practice, the potential U in (5.4) has to be approximated, as in the
pure time-independent case, by one of the standard (Hartree–Fock- or DFT-
type) methods. If the model is the Hartree–Fock approximation, we need
to find at each time-step the Hartree–Fock ground state, which in practice
(following the discussion of the previous sections) amounts to solving the
SCF equations. Thus the system to be simulated reads





mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), . . . , x̄M (t)),

W (x̄1, . . . , x̄M ) = U(x̄1, . . . , x̄M ) +
∑

1≤k<l≤M
zk zl

|x̄k−x̄l| ,

U(x̄1, . . . , x̄M ) = EHF (φ1, . . . , φN )
{

F x̄1,...,x̄M

Φ φi = λi φi,∫
R3 φiφj = δij

(5.5)

where we recall that F x̄1,...,x̄M

Φ is the Fock operator (2.16) that depends
parametrically on the positions x̄k of the nuclei and the φj are the lowest
N eigenfunctions of FΦ.
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Likewise, if the static model is, e.g., a Kohn–Sham model, then the last
two lines of (5.5) are replaced by the equations (2.23), and thus




mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), . . . , x̄M (t)),

W (x̄1, . . . , x̄M ) = U(x̄1, . . . , x̄M ) +
∑

1≤k<l≤M
zk zl

|x̄k−x̄l| ,

U(x̄1, . . . , x̄M ) = EKS(φ1, . . . , φN )
{

K x̄1,...,x̄M (ρΦ)φi = λiφi,∫
R3 φiφj = δij

(5.6)

Even within the above approximation, the coupled problem (5.4) remains
very time-consuming since a minimization problem (i.e., a nonlinear eigen-
value problem) has to be solved on the fly for each time-step. The solution
procedure of the static electronic problem is thus the inner loop of the dy-
namics. Therefore, from a numerical viewpoint, the task for simulating an
adiabatic-type model is a sequence of 3-step iterations on the time variable:

(i) determine the electronic state by solving the nonlinear eigenvalue prob-
lem (SCF problem),

(ii) compute the gradient of the interaction potential W , using the tech-
niques of analytical derivatives described in Section 3.8,

(iii) integrate in time the Newtonian dynamics.

With a view to circumventing the difficulty of solving a nonlinear eigen-
value problem at each time-step, Car and Parrinello (1985) introduced the
idea of replacing the last two lines of (5.6) by a virtual time evolution, thus:





mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), . . . , x̄M (t), t),

W (x̄1, . . . , x̄M , t) = EKS
x̄1,...,x̄M

(φ1(t), . . . , φN (t)) +
∑

1≤k<l≤M
zk zl

|x̄k−x̄l| ,

µ∂2φi

∂t2
(t) = −K x̄1,...,x̄M (ρΦ(t))φi(t) +

∑N
j=1 Λij(t)φj(t),

Λij(t) = 〈φj(t), K
x̄1,...,x̄M (ρΦ(t))φj(t)〉 − µ

∫
R3

∂φj

∂t (t)∂φi(t)
∂t (t),

(5.7)
where µ is a fictitious mass (the limit µ −→ 0 formally yields the adiabatic
approximation (5.6)). The time-step used needs to be smaller than that
used for the adiabatic simulation, but the Car–Parrinello method is usually
more efficient because no minimization is required. The method is thus
extremely popular and very successful, and is thus widely used in a broad
spectrum of contexts. It has allowed for the treatment of definitely larger
systems, which is huge progress. However, for our main focus here, regarding
numerical analysis, the practical difficulty of the method lies in the proper
tuning of the parameter µ, for which no theoretical grounding is known.
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The only mathematical work on the approach is due to Bornemann and
Schütte (1998). Notice that in practice, the forces ∇x̄k

W are determined,
as in the case of (5.4), by the technique of analytical derivatives, this time
apparently without any rigorous foundation.

For the sake of completeness, let us mention another track that is cur-
rently investigated in the applied mathematics community. It consists in
keeping the minimization problem as such (and not modifying it as in the
Car–Parrinello approach), but treating it in a rather approximate way,
through the paradigm of reduced basis techniques. As the minimization
is parametrized by the positions of the nuclei, it is natural to envision a
method where the solution is indeed developed on an adequate problem-
dependent basis made of the solutions of the same problem for reference
positions of the nuclei. Ideas in this direction, still in their infancy, are
described in Cancès, Le Bris, Maday and Turinici (2002), Barrault, Maday,
Nguyen and Patera (2004a) and Barrault et al. (2004b). The issues under
investigation in particular embody issues regarding reduced basis techniques
for eigenvalue problems, for vectorial problems, and for nonlinear problems
in general, along with the development of adequate error estimators to cer-
tify the results.

5.2. Classical molecular dynamics

We concentrate in this section on the numerical simulation of Newtonian
dynamics, which is a part of any of the above coupled simulations: the non-
adiabatic one (5.3), the adiabatic one (5.4), and even the Car–Parrinello
simulation (5.7). We again emphasize, as we did in the Introduction, that
the present section does not pretend to be a comprehensive exposition of the
state of the art of molecular dynamics, but rather a rapid guided tour of the
challenging issues in the domain. Nor will we go into a description of all the
applications of molecular dynamics, which is indeed the most popular and
commonly used field of molecular simulation. This would require a whole
encyclopaedia.

The literature is rich. On the one hand, we refer to the classical mono-
graphs of Hairer, Nørsett and Wanner (1993), Hairer and Wanner (1996)
and Sanz-Serna and Calvo (1994) for the numerical analysis of methods
for ordinary differential equations and Hamiltonian systems. The reference
Griebel, Knapek, Zumbusch and Caglar (2004) is dedicated to molecular
dynamics, and also more algorithmically oriented. On the other hand, from
the application viewpoint, the treatises by Allen and Tildesley (1987), Fren-
kel and Smit (2001), Schlick (2002), Haile (1992) and Rapaport (1995) are
useful references in the field. In the chemistry literature, there are regular
surveys by experts in the field, and we would like to mention Neumaier
(1997), Tuckerman and Martyna (2000) and Tuckerman (2002). Finally,



Computational chemistry 417

proceedings books such as Deuflhard et al., eds (1999) or Nielaba, Mareschal
and Ciccotti, eds (2002) collect various contributions and show how lively
the field is.

For simplicity we restrict ourselves to the case of the Newtonian equa-
tions contained in (5.4) that are autonomous (no explicit dependence of the
Hamiltonian with respect to time). For extensions to the non-autonomous
case, we refer to the literature. The focus is therefore on the simulation of

mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), . . . , x̄M (t)), (5.8)

supplied with initial conditions on the positions and the velocities. The
system may be recognized as a Hamiltonian system:

{
dqk

dt = ∂H
∂pk

(q1, p1, . . . , qM , pM ), k = 1, . . . , M,

dpk

dt = − ∂H
∂qk

(q1, p1, . . . , qM , pM ), k = 1, . . . , M,
(5.9)

where we have introduced the Hamiltonian

H(q1, p1, . . . , qM , pM ) =
1

2

M∑

k=1

p2
k

mk
+ W (q1, . . . , qM ). (5.10)

In classical molecular dynamics, the potential W is typically a paramet-
rized potential which gives rise to force fields ∇W that are representable
in terms of simple mathematical forms, say, e.g., as explicit functions of
the bond lengths, and the dihedral angles, etc., in the molecular system.
The analytic form of the functions and the parameters in such potentials
are often least-square fitted with ab initio computations performed off-line
on smaller systems. Two of the most famous force fields are those of the
codes AMBER and CHARMM. Parametrized potentials are of course un-
able to simulate the changes of electronic structure in the molecule (thus
in particular chemical reactions) contrary to the coupled quantum/classical
simulations (5.4) and, above all, systems such as (5.3).24

For such potentials, the computational price of (5.8) is only due to the
number of interacting particles: it is only when millions of atoms are sim-
ulated that calculating the interactions is a serious task, which can for
instance be done with rapid methods such as FMM, and/or multiple time-
step methods. For a smaller number of particles it is an easy task. On the
other hand, when the potential is of quantum nature and is calculated on
the fly, the computational cost of each evaluation of the potential is itself

24 Note, however, the existence of rough approximations, such as the variable charge

molecular dynamics, that aim to account for changes in the electronic structures while
using parametrized potentials.
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costly, even for a small system. The state of the art of the technology25 is as
follows: with parametrized force fields, millions of atoms can be simulated
over a time frame of 10−8 s, while for quantum forces, only a few hundreds
atoms can be simulated on 10−11 s.

The major point to bear in mind when addressing the construction and
numerical analysis of integration schemes for molecular dynamics is that
the question asked is not to simulate the particular evolution of a single
system, starting from a precise initial configuration. Of course, such a task
exists, in particular when simulating chemical reactions: details of the dy-
namics will then be ‘observed’ that are mostly not accessible to experiment
(unless emerging and still difficult techniques such as those of femtochem-
istry are employed). But the main purpose of molecular dynamics is to
simulate the evolution of a set of systems, in order to compute statistical
ensemble averages, with a view to evaluating thermodynamic properties,
which is of primary interest because again some of these properties cannot
be provided by experiment. This latter objective has its theoretical roots in
the (claimed) ergodicity of the system under study. Typically, the average
value 〈A〉 of some observable A on a system of M particles reads as the
following integral over the phase space of the position/impulsion of the M
particles:

〈A〉 =

∫

R6M

A(q1, p1, . . . , qM , pM ) f(q1, p1, . . . , qM , pM ) dq1 dp1 · · · dqM dpM ,

(5.11)
where f is the distribution function in the phase space. It can be evaluated
through a Monte Carlo sampling method, but it is often more efficient to
obtain it by

〈A〉 = lim
T−→+∞

1

T

∫ T

0
A(q1(t), p1(t), . . . , qM (t), pM (t)) dt (5.12)

along a trajectory of the system obeying to the dynamics
{

dqi

dt = pi, i = 1, . . . , M,

dpi

dt = F (qj , pj), i = 1, . . . , M,
(5.13)

where F is some force field, so that the measure

f(q1, p1, . . . , qM , pM ) dq1 dp1 · · · dqM dpM

is precisely the invariant measure of the dynamics. In the simplest case,
the statistical ensemble to sample is the microcanonical ensemble (N, V, E)

25 We provide here a hopefully representative statement, on figures that of course are
highly sensitive to the computing facilities at hand.
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and the dynamics to be considered is the Hamiltonian dynamics (5.9).
We mostly concentrate on this case.

The numerical challenge can be gauged on (5.12). There is no free lunch,
and transforming the difficult sampling of the phase space in order to eval-
uate (5.11) into the dynamics (5.13) results in the fact that it is only in
the long-time limit that the average is obtained. Some comments are then
in order.

First, ergodicity is not easy to establish. For most systems it can be
at best conjectured, but is rarely proved (see Walters (1982) or Gutzwiller
(1990) for the mathematical background). The case of Hamiltonian systems
has been examined in Markus and Meyer (1974): they are generically not
ergodic. In addition, ergodicity may stem from various phenomena: the
ergodic nature that integrable Hamiltonian systems might have is very pe-
culiar, and, e.g., different from that of ‘chaotic’ systems.26 In fact, the lack
of a satisfactory theoretical understanding of ergodicity is not a limitation
for the numerical practice. What is indeed a bottleneck is the evaluation
of the time T on which the system can reasonably be considered to have
visited its whole space phase. For the rare systems for which this time can
be evaluated, T can be as large as many times the age of the universe, which
makes the ergodicity property useless in practice. One way or another, it
must be understood how to circumvent the largeness of T in (5.12). This
will be the purpose of some acceleration techniques for molecular dynamics
that we will introduce in Section 5.3.

Second, the difficulty is enhanced by the fact that, by nature, the mo-
lecular dynamics is a multiscale phenomenon. Recall that, in its simplest
occurrence, the evolution of bond lengths, dihedral angles, etc., are simu-
lated. Typically, there are in this set of variables rapidly changing degrees
of freedom, oscillating over time periods of the order of 10−15 s, and also
slower ones, and we wish to simulate all of them over a time frame of a few
fractions of a second, to say the least. Therefore, even for accessible times
T , there are still challenging issues due to the highly oscillatory character
of the system.

Third, as we have mentioned above, it is not a question of simulating the
evolution for a precise initial configuration. This clearly advocates a geo-
metric viewpoint, where flows, rather than individual trajectories, are the
objects of interest. This is therefore the domain of geometric integration
(see Hairer, Lubich and Wanner (2002), or Leimkuhler and Reich (2005)),
and as the system often has a Hamiltonian structure, the field of symplectic
integration is concerned. In order to reproduce the qualitative properties of
the evolution at the continuous level, namely the symplectic nature and pos-

26 The systems of molecular dynamics seem to be equally far from either of these two
categories.
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sibly the reversibility, integration schemes that conserve these properties are
utilized. However, there is no simple way to go beyond this. Schematically,
one could say that, from the standpoint of numerical analysis,

• it is well understood how to depart from the question of accuracy for
short times and rather turn one’s interest to stability and conserva-
tion issues in the long time, which is the purpose of geometric and
symplectic integration,

• it is still an open question to go further than that in the spirit of the
computation of averages: to a certain extent there is no better way
in order to compute averages than to follow individual trajectories as
precisely as possible (in the sense of the first item above).

Fourth, even when using up-to-date techniques for treating oscillatory sys-
tems together with the dedicated tools of geometric integration, the time T
that can be reached for systems of practical interest is still often too small
to get correct ensemble properties (and this is true even in the simplest
versions of molecular dynamics). Therefore, classical molecular dynamics
is not enough, and we resort to more efficient techniques. Such techniques
basically all rely on stochastic simulations. As the main object is the phase
space (a fact already exploited by the geometric viewpoint above), we def-
initely focus on the energy landscape, and designs techniques, more general
than ‘simply’ following trajectories, that aim at exploring this landscape.
This allows us to reach simulation times that are, eventually, of practical
interest. The next section is devoted to such techniques for the acceleration
of simulations in order to bridge the time gap.

In the rest of this section, we overview some of the most commonly used
techniques for integration of the equations of motion over reasonably long
times and for the treatment of oscillatory terms.

We begin with the long-time integration. From the numerical viewpoint,
the purpose is, as usual, to build algorithms that reproduce the theoretical
mathematical properties of the system to be simulated. The main property
is symplecticity (and also possibly reversibility in time when the Hamilto-
nian is autonomous as in (5.9)).

We simply recall here that symplecticity always implies that the flow
keeps the volume constant in phase space, which conservation is indeed
related to the conservation of energy. In fact, it can be shown, by backward
analysis, that algorithms enjoying symplecticity at the discrete level have
the following property: their numerical flow Φn is close to the exact flow
Φ̃ of a Hamiltonian system (in fact approximately of order e−1/∆t if ∆t
denotes the discretization time-step). This latter system is not the original
system, but its energy H̃ is close to the energy H of the original system
(in fact approximately of order (∆t)p if the numerical scheme is of order p).
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The flow Φ̃, being the exact flow of a Hamiltonian system, preserves its
energy H̃. Consequently, Φ̃ almost preserves H. Finally, Φn, being close
to Φ̃, behaves accordingly, and indeed nearly conserves the energy at order
(∆t)p over time intervals of length e1/∆t. The symplecticity is thus the key
property for the simulation of Hamiltonian systems on large times.

An interesting application of backward error analysis in this framework is
performed in the recent works of Cancès et al. (2004b, 2004c) that study the
speed of convergence of the discretized version of (5.12) toward the average
value (5.11) when a symplectic scheme is used.27 It is proved there that,
in the long time limit, the fact that the numerical trajectory generated
is the exact trajectory of a modified Hamiltonian allows us to evaluate
averages over an isosurface of the Hamiltonian, with a speed of convergence
that is O

(
1
T

)
. More precisely, one can show that

∣∣∣∣
(

1

T

∫ T

0
A(q(t), p(t)) dt

)

numerical
approximation

−〈A〉
∣∣∣∣ = O

(
1

T

)
+ O

(
∆tr
)

(5.14)

where r is the order of the symplectic scheme, and the prefactor in O
(

1
T

)

indeed depends on the largest oscillations in the system. This estimate can
be rigorously established in the (somewhat academic) case of integrable sys-
tems (then the average 〈A〉 of course denotes the average for given values of
the invariants of the system), and then extended by KAM theory to the case
of near-integrable ones (loosely speaking, such systems that are perturba-
tions of integrable systems behave like integrable systems over periods of
time exponentially long w.r.t. the perturbation size). Despite this extension,
the result unfortunately covers only a tiny subset of the set of Hamiltonians
(see again Markus and Meyer (1974)). Estimate (5.14) in turn leads to an
acceleration technique for the computation for averages by (5.12), the accel-
eration being based on the use of signal filtering techniques and ending up
in a convergence at the rate O

(
1

T k

)
+ O(∆tr), k arbitrarily large, in (5.14).

The technique yields promising results for test cases, but its adaptation to
real cases of interest, where Hamiltonians are not near-integrable, is still
unclear. It is of course to be emphasized that the technique aims at ac-
celerating the O

(
1
T

)
convergence only when it holds. On the other hand,

when, e.g., the convergence only holds at the rate O
(

1√
T

)
, which is the case

for many systems of practical interest, then the method does not succeed in
improving the rate of convergence. More details can be found in the above
references. Despite the limitation of these works, they are among the rare

27 Actually, the use of a symmetric scheme for a reversible integrable or a reversible near-

integrable Hamiltonian would allow for the same conclusions (see Hairer et al. (2002,
Chapter 11)).
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ones that, in some weak sense at least, try to assess the accuracy of mole-
cular dynamics simulations on the basis of the output they are primarily
used to provide, namely averages. Some related issues are addressed by
Tupper (2005).

The prototypical example of an algorithm that is symplectic and reversible
and that is commonly used for molecular simulation is the following leap-
frog algorithm, known in the chemistry literature as the Verlet algorithm for
it was introduced there by Verlet (1967). It is an explicit algorithm that,
for system (5.9) (for M = 1), becomes





qn+1 = qn + δt pn+1/2,

pn+1/2 = pn−1/2 + (δt) ∂H
∂q (qn),

(5.15)

or equivalently




qn+1 = qn + δt pn + (δt)2

2
∂H
∂q (qn),

pn+1 = pn + δt
2

(
∂H
∂q (qn+1) + ∂H

∂q (qn)
)
,

(5.16)

the latter version being called velocity Verlet.
This algorithm works remarkably well in the context of molecular dy-

namics. Higher-order schemes, still symplectic and reversible, are used
when accuracy is required. For their expression, as well as for their numer-
ical analysis, we refer to the treatises mentioned before. We also refer to
Hairer, Lubich and Wanner (2003) for a pedagogic presentation of the Verlet
algorithm.

The situation described above is the case when a Hamiltonian dynam-
ics in the (microcanonical) (N, V, E) ensemble must be generated. But in
fact, computing ensemble averages in this ensemble is of little interest28 in
comparison to the (canonical) (N, V, T ) ensemble. Of course, in the limit
of an infinite number of particles, or in an infinite volume, the two averages
coincide (at least for local observables A), but this is not the case in prac-
tice.29 Therefore, there is the need to sample the (N, V, T ) ensemble and
this can be performed by ad hoc trajectories. For this purpose, a method
in chemistry is that of thermostats. The idea has been developed in Nosé
(1984), Hoover (1985) and Nosé (1986). For the purpose of illustration, we
only mention the method in its simplest case, namely for one particle in 1D.

28 Note that we do not claim that simulating (N, V, E) trajectories is also of little interest,
as it can help in sampling ensembles different from (N, V, E).

29 Works in progress by Olla aim at evaluating the speed of convergence of one average
to the other when the volume of the system goes to infinity.
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The dynamics then reads




dq
dt = p

m ,

dp
dt = F − pξ

Q p,

dξ
dt =

pξ

Q ,

dpξ

dt = 1
m p2 − kB T ,

(5.17)

where Q is a coupling constant and T denotes the temperature that needs
to be fixed (kB is the Boltzmann constant). The evolution of the additional
pair of variables (ξ, pξ) aims to measure to what extent the constraint on the
temperature is obeyed. This form is in fact only a trivial case of a general
form of the so-called Nosé–Hoover chain, where more than one additional
pair of variables is used. The method is widely used, but there are still
open questions on its validity. First, on the very theoretical level, there is
no justification of the method, even in the simplest occurrence described
above.30 Second, in practice, some observations are puzzling: for instance
the efficiency of the method is highly sensitive to the number of thermostats
used, and there is no convincing explanation of this fact. This twofold
statement justifies at least the use of alternatives methods. One of them is
based upon the Langevin equation. Simply stated, it consists in replacing
the Hamiltonian dynamics,

{
dq
dt = p,

dp
dt = −∇V (q),

(5.18)

by the stochastic dynamics,
{

dq = p dt,

dp = −
(
γ p + ∇V (q)

)
dt + σ dWt,

(5.19)

where dWt is a Brownian motion, σ depends on the temperature, and γ �= 0
is a constant. Here, there exists a theoretical foundation for the computa-
tion of the average of an observable using the evaluation along the traject-
ory. In other words, ergodicity need not be assumed: it is proved. There
is convergence in law in the long time to the invariant measure for the
(N, V, T ) ensemble, and this convergence occurs exponentially fast, which is
good news for the computational cost.31 However, in practice, the need to

30 It is only known that, if ergodicity is assumed, then the Nosé–Hoover dynamics does
sample the correct ensemble (see Nosé (1984), and also Bond, Leimkuhler and Laird
(1999) for a study devoted to the Nosé–Hoover dynamics).

31 However, nothing is known mathematically on the variation of the speed of convergence
with respect to the number of particles N (here taken to one for simplicity), while it
is expected that the convergence is more rapid as N grows to infinity.
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compute the empirical mean, which requires averaging over Brownian tra-
jectories, counterbalances this gain. In comparison to other approaches, the
method can be costly, but the fact that it has a sound theoretical ground is
undoubtedly appealing. We refer to Mattingly, Stuart and Higham (2002)
for a related mathematical study.

Let us turn to the treatment of oscillatory terms. In this respect, molecu-
lar mechanics is a domain very close to domains such as structural mech-
anics, robotics, chemical engineering, and other domains where systems of
ODEs with different time-scales must be handled. Note that the difference
in time-scales for the various variables can come from the characteristic
time itself (a rapid oscillation of a bond), or also from a viewpoint mixing
time-scales and distance-scales (the long-distance potential created by an
atom that is far away needs not be updated so frequently). Heuristically,
the treatment of the system can be based upon

• a dedicated treatment of the full system by multiple time-step methods,

• an elimination of the rapidly oscillating degrees of freedom using an
algebraic constraint,

• the addition of a stochastic modelling, possibly ending in a friction
term, in order to damp the rapid oscillations,

all options with a view to adopting a time-step in the simulation limited
by the slow degrees of freedom and far larger than that of the rapid de-
grees. Whichever option is followed, one key issue is the way the information
provided by the rapid degrees of freedom is inserted into the dynamics of
the slow degrees of freedom, because at some point, some averaging or ho-
mogenization technique is required. This issue is indeed intimately related
to renormalization techniques.

The toy model is that of the following system:
{

dy
dt = f(y, z),

ε dz
dt = g(y, z),

(5.20)

where y stands for the slow degrees of freedom and z for the rapid ones, ε
denoting the discrepancy between the timescales. The direct treatment of
the above system leads to operator splitting methods, where possibly the
effect of the rapid variable z onto the slow one y is obtained by homogeniz-
ation. We refer to the literature. On the other hand, ε can be considered as
so small that the second equation of (5.20) is replaced by 0 = g(y, z), thus
leading to the algebraic-differential system

{
dy
dt = f(y, z),

0 = g(y, z).
(5.21)
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In the present context, a prototypical situation is the dynamics for the
following Hamiltonian:

H(q, p) =
p2

2
+ V (q) +

1

ε
W (q), (5.22)

namely {
dq
dt = p,

ε dp
dt = −ε dV

dq (q) − dW
dq (q),

(5.23)

which is approximated by {
dq
dt = p,

0 = dW
dq (q),

(5.24)

The numerical simulation of a system like (5.21) resorts to the well-known
techniques of constrained dynamics. The situation crucially depends on
whether the constraint is holonomic or not, i.e., depends only on the posi-
tion of the system (which is the case in (5.24)), or also on the velocity. For
holonomic constraints (think, for instance, of a bond length that is fixed in
the molecular dynamics), algorithms such as SHAKE, introduced by Ryck-
aert, Giccotti and Berendsen (1977), and its improvement RATTLE due to
Andersen (1983), are employed. Basically, they consist in running the first
line of (5.21) regardless of the constraint, while next imposing the constraint
by projection at each time-step. Higher-order variants of these algorithms
have been introduced and developed by Jay (1994, 1996).

Regarding the alternative techniques based on an adequate stochastic
damping of the rapid degrees of freedom, which is kind of a compromise
between the true simulation of the complete system, and the constrained
dynamics, the literature is very rich. We refer, e.g., to the works by Schütte,
Walter, Hartmann and Huisinga (2004) and Vanden-Eijnden (2003).

Before we get to the next section, we would like to mention a general-
purpose technique that can be applied in particular to the molecular dy-
namics trajectories, in order to improve the applicability of all the above
techniques. The technique we allude to is a domain decomposition tech-
nique in time, called the parareal method. It is well known that in scientific
computing there have been many attempts to adapt the domain decompos-
ition method, successfully applied to the space variables, in order to apply
it to the time variable. The parareal method is the most recent attempt to
date in this direction, and seems to be a breakthrough. It is originally due
to Lions, Maday and Turinici (2001) and was further developed in a series
of works by Maday, Turinici and collaborators. The method is dedicated
to PDEs, while other previous attempts were focused on ODEs: see, e.g.,
Bellen and Zennaro (1989) or Chartier and Philippe (1993). As in the spa-
tial case, the paradigm is based upon adequate iterations between a local
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solver (fine time-step ∆t) and a global, or coarse, solver. The originality of
the method resides in the way the iterations are done. Its efficiency heavily
relies upon the definition of the coarse solver. It can of course be the same
solver as the local one, but with a larger time-step ∆T ≫ ∆t, a choice that
does work for parabolic equations and some hyperbolic equations. How-
ever, for many hyperbolic equations it is of crucial importance to design
the coarse solver adequately, e.g., by solving with the fine time-step ∆t a
coarse-grained model, otherwise the method is not interesting. An example
of a successful application of the method to the present context is discussed
in Baffico et al. (2002).

We devote the next section to our last point, the acceleration techniques.

5.3. Methods for bridging the time-scale gap

Basically, the dynamics of a molecular system consists of a succession of
long periods of time where the system oscillates around local minimizers of
the energy inside a given basin, and rapid transitions between two nearby
basins, usually following a path that goes through a saddle-point. The
direct simulation of a dynamics in this context requires long integration
times that are mostly uninteresting, but that cannot be skipped without
running the risk of missing the rare events, that is, escape from the current
basin followed by transition to another.

Unfortunately, in many if not all cases, these rare events occur after a time
that is not accessible to a direct simulation. Thus alternative techniques
have to be developed. As briefly mentioned above, the techniques that have
recently appeared in the literature and that aim to enlarge the applicability
of molecular dynamics, focus on the energy landscape rather than on the
dynamics itself. This has the twofold interest of making possible long time
dynamics and identifying the relevant objects (saddle-points = transition
states, and local minimizers = metastable states) for the system under study.

Schematically, one can say that the dynamics starting from an energy
basin denoted by A can be decomposed in the following steps:

(a) find the list of basins B that are accessible from A,

(b) determine the pathway from A to each B,

(c) (randomly) choose one B in the list,

then set A=B and continue. We now rapidly examine some issues related
to each of the above steps.

The first difficulty to overcome when starting a dynamics from a point
in a given energy basin is to find an appropriate escape path more quickly
than in reality. More or less, the idea is to modify the probability of an
escape. As the depth of the basin is indeed responsible for the long time
needed to escape, a possibility is to ‘modify’ this depth.
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First, we may notice that implicitly the depth that is seen by the system
depends on the temperature: in a simplified picture, the transition state
theory relates the energy barrier ∆E to overcome in order to escape the
basin with the rate of escape r, at a given temperature θ, through

r = (Const.) × exp

(
−∆E

kBθ

)
. (5.25)

Therefore heating the system amounts to raising the probability of escaping
from energy minimizers. This is the bottom line of the temperature acceler-
ated dynamics introduced by Sorensen and Voter (2000) (see also Montalenti
and Voter (2002)). Then we need to correct the output of the method, as
of course some escapes that are almost impossible in practice will indeed
be observed at virtual high temperatures: should the need arise, the dy-
namics is reflected back in the basin if the transition is inconvenient. Note
that, from the practical viewpoint, it is an issue to know whether the upper
boundary of the basin has been attained by the dynamics or not. One way
to proceed is to perform a descent method, periodically along the dynamics,
in order to check whether we get back to the starting basin A, or to another
one B �= A, the latter case indicating the transition. Another option is to
monitor the lowest eigenvalue of the Hessian. As the relative rates of escape
are correct but not the rates themselves (see (5.25)), we extrapolate from
the virtual time of escape the real time of escape at the real temperature
using formula (5.25). Impressive boosting factors of the dynamics can be
observed (up to 107 in convenient cases) but some practical issues remain,
and the method is not applicable to all situations.

Many alternative methods can be quoted, similar in spirit to the temper-
ature accelerated dynamics. They modify the shape of the energy surface
in order also to escape more easily. One is the hyperdynamics method ,
again due to Voter (1997), predating the temperature-accelerated method.
It designs a biased potential surface with a potential Ṽ modified from the
original potential V , that ensures that the saddle-points of V and Ṽ are the
same, but that the basins of Ṽ are less deep. We refer to Sanz-Navarro and
Smith (2001) for an application. Another method is that introduced by Laio
and Parrinello (2002), where a non-Markovian coarse-grained dynamics is
performed. The idea is to modify on the fly the potential surface in order
not to visit again zones that have already been explored, which amounts to
filling in progressively each basin of the energy surface. A related idea is
that introduced by Barth, Laird and Leimkuhler (2003), who also modify
the energy landscape by generating a modified ensemble dynamics, which
amounts to reducing the depths of the basins (in a slightly different way
from above, since the method leaves the bottoms of the basins unchanged).
Still another idea is explored in Darve, Wilson and Pohorille (2002).



428 C. Le Bris

A somewhat different paradigm can be used to deal with item (a) (to-
gether indeed with (b) and (c)): there is the possibility of running many
trajectories (and this can be done on the original energy surface, or a mod-
ified one as above) in order to make the rare event more frequent in terms
of wall-clock time. This is the essence of the method of replicas introduced
in Voter (1998) (see also Voter and Sorensen (1999) for a review). With
this method, the general spirit of most acceleration methods for molecu-
lar dynamics becomes obvious: the fundamental idea is to replace a long
trajectory (that required by (5.12)) by a set of smaller ones, plus some
post-treatment of the result. With the help of such methods, we are then
able to reach longer times of virtual simulation, only performing simula-
tion on small times. It must of course be understood that ‘small’ means
small in comparison with the time T appearing in (5.12), but ‘as large as
possible’ in view of the current state of the art for the best trajectory simu-
lation algorithms available. In some sense, the dynamics simulation is seen
as an inner calculation, inserted in a second step in a method based upon
another paradigm.

For the sake of illustration, let us present a schematic description of the
method of replicas. Several trajectories are simulated in parallel, and the
transition time is modelled by an exponential law. When the first transition
is observed in the list of all dynamics generated in parallel, the correspond-
ing wall-clock time is set to the sum of all the individual times of each of
the trajectories. In so doing, we obtain correct transition times, and may
detect transitions to other basins more easily. The rates of transitions ob-
tained may be used in a second step in a kinetic Monte Carlo simulation, a
technique we will come back to below.

Let us turn specifically to step (b) and suppose that we have at hand two
basins, respectively called A and B. We now need to discover the correct
transition pathway from A to B, which in chemistry is called the reaction
pathway, the curve abscissa along the pathway being called the reaction
coordinate. Think typically of an angle in a molecule that modifies in order
to oscillate between two enantiomers (stable configurations).

Techniques used at this stage essentially reduce to generating moves in
the space of all trajectories linking A and B along the energy surface, with a
view to determining the realistic one. Often it is one that goes through the
saddle-point(s) separating the basin of A from that of B. The move in the
trajectory space can be deterministic, and then it is based on the proper-
ties of the first and second derivatives near a saddle-point (following gradi-
ent information along the current trajectory to locate the saddle-point), or
more stochastic, and not necessarily relying on a saddle-point information.
Techniques in this vein are the nudge elastic band method by Henkelman
and Jonsson (2000), the string method by E, Ren and Vanden-Eijnden
(2002) (see also E, Ren and Vanden-Eijnden (2004b), the dimer method
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by Henkelman and Jonsson (1999), and also E, Ren and Vanden-Eijnden
(2004a), the method by Garrahan and Chandler (2002), that by Zuckerman
and Woolf (1999), by Ayala and Schlegel (1997), and so on. We also refer
to the survey, with a self-explanatory title, by Bolhuis, Chandler, Dellago
and Geissler (2002), and to the introductory text by Chandler (1998).

To perform step (c), a method already used in (a) to escape the basin may
of course be used, but a new paradigm can be adopted. When minimizers
and transition pathways are located,32 the rate of escapes from each basin
can be evaluated (by transition state theory) and a purely stochastic method
can be performed, called kinetic Monte Carlo, based on the same paradigm
as that mentioned above for the method of replicas: independent transition
rates following exponential laws are employed. This time, no dynamical
trajectory is explicitly used, and the long time dynamics of the system boils
down to a sequence of random numbers, monitoring in fact the transitions
and non-escapes in a follow-up of basins. An instance of an alternative
approach for item (c) is introduced in Mousseau and Barkema (2004).

What about the mathematical understanding of all the above methods?
Actually, depending on the viewpoint, it can be considered as either suf-
ficient or poor. As the output of most methods is a simple Monte Carlo
simulation, and since this method has long been the method of choice for
studies in probability theory because of the wide range of its applications,
there is not much to say. On the other hand, the global strategy definitely
needs some understanding and mathematical foundation. A series of works
with a solid mathematical ground is that by Huisinga and Schütte (2003),
which also gives rise at the algorithmic level to reportedly efficient meth-
ods for the above problem: see Deuflhard, Huisinga, Fischer and Schütte
(2000), Schütte, Fischer, Huisinga and Deuflhard (1999), and other works
by the same authors. The formalization is as follows. The dynamics over a
time frame of width τ is seen as a transition operator Tτ that associates the
initial point to the final one. If the configuration space is discretized, the
examination of the spectrum and spectral projector of this transition oper-
ator reveals the metastable zones of the configuration space (in brief, the
zones where it is mostly likely that over the time τ any trajectory starting
from a point in the zone will end up in another point in the same zone) and
the transition rates from one metastable state to the other.

We wish to emphasize that, clearly, the above list of methods is by no
means comprehensive. For instance, we have not even approached the tech-
niques based upon the renormalization paradigm, where a coarse-grained

32 In fact there is no hope of locating all of them, but the above means that, at some
stage, it is considered that a sufficient knowledge of the topology of the energy surface
has been reached, at least at the vicinity of the configuration of the system under study,
so that one may proceed to the next step.
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model featuring only a limited number of degrees of freedom is derived. Be-
cause of this limited size, classical approaches such as those of the previous
section are efficient. Typically a set of mesoscale (i.e., intermediate scale)
particles is simulated that interact through an adequate potential (the de-
termination of which is the key issue). We refer, e.g., to Forrest and Suter
(1995) and to the so-called dissipative particle dynamics technique.

The field of acceleration methods for molecular dynamics is under con-
struction, and we are convinced it will witness huge efforts in view of the
importance of the applications.

6. Current and future trends

The domain of computational chemistry is now a well-established domain
both from the downstream standpoint, that of applications, and from the
upstream standpoint, that of theory, modelling and, increasingly, numerical
analysis. To some extent, the publication of the present article in Acta
Numerica testifies to the latter.

The relevance of computational chemistry does not only concern tradi-
tional fields such as chemistry, and its companion field biology. Because
the size of technological devices is ever shrinking, once irrelevant phenom-
ena at the microscopic level are now considered relevant. At the other end
of the spectrum, for macroscopic compounds or devices, understanding of
microscopic behaviour is becoming a key issue, in order to reach maximum
efficiency. Let us quote two instances of this trend.

In biology, dynamics of proteins, possibly with chemical reactions at some
sites, involves the coupled simulation of quantum degrees of freedom with
classical ones: see Monard and Mertz, Jr. (1999) for a review of applications
in biochemistry.

In materials science, multiscale methods in computational mechanics are
growing in importance. There, computational chemistry is involved in the
simulation of the microscopic degrees of freedom, and coupled to more usual
techniques of the engineering sciences, such as finite element methods for
computational continuum mechanics. The simulation of dislocations, frac-
tures, etc., with a view to further understanding, e.g., fatigue phenomena
cannot be studied without a pinch of computational chemistry. For in-
stances of works and challenges in this direction, we refer to the books by
Barth, Chan and Haimes, eds (2002), Bulatov et al. (1999), Deák, Frauen-
heim and Pederson, eds (2000), Kirchner, Kubin and Pontikis, eds (1996),
Kitagawa et al., eds (1998), Raabe (1998), the special issue by Liu et al.,
eds (2004), and to the emerging techniques coupling the atomistic level to
the continuum description such as Tadmor, Smith, Bernstein and Kaxiras
(1999), Shenoy et al. (1998), Miller, Tadmor, Phillips and Ortiz (1998),
Tadmor, Phillips and Ortiz (1996), Tadmor, Ortiz and Phillips (1996) and
Shenoy et al. (1999).
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All this makes computational chemistry an important field for the future.
From the numerical analysis viewpoint, however, the field is not completely
explored. It can be considered that some challenging issues, such as the
convergence of SCF algorithms, have been treated in a satisfactory way, but
many well-established techniques still require mathematical understanding.
It is of course even clearer for the new techniques that appear almost every
day, and that aim to treat problems of outstanding difficulty: linear scaling
methods for the static description of large size systems, evolution PDEs in
high dimensions, acceleration methods for dynamics over long times, and
so on.

Obviously, the competences required are varied: optimization, linear and
nonlinear programming, approximations of PDEs, of ODEs, stochastic pro-
cesses, to name a few.
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C. Schütte, J. Walter, C. Hartmann and W. Huisinga (2004), ‘An averaging prin-
ciple for fast degrees of freedom exhibiting long-term correlations’, SIAM
Multiscale Model. Simul. 2, 501–526.



Computational chemistry 443

C. Schwab and T. von Petersdorff (2004), ‘Numerical solution of parabolic equa-
tions in high dimensions’, M2AN: Math. Model. Numer. Anal. 38, 93–127.

C. Schwartz (1962), ‘Importance of angular correlation between atomic electrons’,
Phys. Rev. 126, 1015–1019.

E. Schwegler and M. Challacombe (1997), ‘Linear scaling computation of the Fock
matrix’, J. Chem. Phys. 106, 5526–5536.

G. E. Scuseria (1999), ‘Linear scaling density functional calculations with Gaussian
orbitals’, J. Phys. Chem. A 103, 4782–4790.

R. Seeger and J. A. Pople (1976), ‘Self-consistent molecular orbital methods XVI:
Numerically stable direct energy minimization procedures for solution of
Hartree–Fock equations’, J. Chem. Phys. 65, 265–271.

Y. Shao, C. Saravan, M. Head-Gordon and C. White (2003), ‘Curvy steps for
density matrix based energy minimization: Application to large-scale self-
consistent-field calculations’, J. Chem. Phys. 118 (14), 6144–6151.

V. B. Shenoy, R. Miller, E. B. Tadmor, R. Phillips and M. Ortiz, (1998), ‘Quasicon-
tinuum models of interfacial structure and deformation’, Phys. Rev. Lett. 80

(4), 742.
V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips and M. Ortiz,

(1999), ‘An adaptative finite element approach to atomic-scale mechanics:
The QuasiContinuum method’, J. Mech. Phys. Solids 47, 611.

R. Shepard (1993), ‘Elimination of the diagonalization bottleneck in parallel direct-
SCF methods’, Theoret. Chim. Acta 84, 343–351.

J. C. Slater (1930), ‘Atomic shielding constants’, Phys. Rev. 36, 57–64.
M. R. Sorensen and A. F. Voter (2000), ‘Temperature-accelerated dynamics for

simulation of rare events’, J. Chem. Phys. 112 (21), 9599–9606.
L. Spruch (1991), ‘Pedagogic notes on Thomas–Fermi theory (and on some im-

provements): Atoms, stars and the stability of bulk matter’, Rev. Modern
Phys. 63, 151–209.

R. E. Stanton (1981a), ‘The existence and cure of intrinsic divergence in closed
shell SCF calculations’, J. Chem. Phys. 75, 3426–3432.

R. E. Stanton (1981b), ‘Intrinsic convergence in closed-shell SCF calculations:
A general criterion’, J. Chem. Phys. 75, 5416–5422.

E. B. Starikov (1993), ‘On the convergence of the Hartree–Fock selfconsistency
procedure’, Mol. Phys. 78, 285–305.

B. Swirless (1935), ‘The relativistic self-consistent field’, Proc. Roy. Soc. A 152,
625–649.

B. Swirless (1936), ‘The relativistic interaction of two electrons in the self-consistent
field method’, Proc. Roy. Soc. A 157, 680–696.

A. Szabo and N. S. Ostlund (1982), Modern Quantum Chemistry: An Introduction
to Advanced Electronic Structure Theory, MacMillan.

E. B. Tadmor, R. Phillips and M. Ortiz (1996), Mixed atomistic and continuum
models of deformation in solids, Langmuir 12, 4529–4534.

E. B. Tadmor, M. Ortiz and R. Phillips (1996), ‘Quasicontinuum analysis of defects
in solids’, Phil. Mag. A 73, 1529–1563.

E. B. Tadmor, G. S. Smith, N. Bernstein and E. Kaxiras, (1999), ‘Mixed finite
element and atomistic formulation for complex crystals’, Phys. Rev. B 59

(1), 235.



444 C. Le Bris

S. Teufel (2003), Adiabatic Perturbation Theory in Quantum Dynamics, Vol. 1821
of Lecture Notes in Mathematics, Springer.

W. Thirring (1983), A Course in Mathematical Physics, in 4 volumes, Springer.
N. Troullier and J. L. Martins (1990), ‘A straightforward method for generating

soft transferable pseudopotentials’, Solid State Comm. 74, 613–616.
M. E. Tuckerman (2002), ‘Ab initio molecular dynamics: Basic concepts, current

trends and novel applications’, J. Phys. Condens. Matter 14, R1297–R1355.
M. E. Tuckerman and G. J. Martyna (2000), ‘Understanding modern molecular

dynamics: Techniques and applications’, J. Phys. Chem. 104, 159–178.
P. Tupper (2005), ‘Ergodicity and the numerical simulation of Hamiltonian sys-

tems’, SIAM J. Appl. Dyn. Syst., to appear.
C. Valdemoro (1992), ‘Approximating the second-order reduced density matrix in

terms of the first-order one’, Phys. Rev. A 45, 4462–4467.
C. Valdemoro, L. M. Tel and E. Perez-Romero (2000), ‘N -representability problem

within the framework of the contracted Schrödinger equation’, Phys. Rev. A
61, 032507–032700.

E. Vanden-Eijnden (2003), ‘Numerical techniques for multi-scale dynamical system
with stochastic effects’, Comm. Math. Sci., 1 (2), 385–391.

D. Vanderbilt (1990), ‘Soft self-consistent pseudopotentials in a generalized eigen-
value formalism’, Phys. Rev. B 41, 7892–7895.

L. Verlet (1967), ‘Computer “experiments” on classical fluids I: Thermodynamical
properties of Lennard–Jones molecules’, Phys. Rev. 159, 98–103.

A. F. Voter (1997), ‘Hyperdynamics: Accelerated molecular dynamics of infrequent
events’, Phys. Rev. Lett. 78, 3908.

A. F. Voter (1998), ‘Parallel replica method for dynamics of infrequent events’,
Phys. Rev. B , Rapid Comm. 57 (22), 57–60.

A. F. Voter and M. R. Sorensen, (1999), ‘Accelerating atomistic simulations of
defect dynamics: Hyperdynamics, parallel replica dynamics and temperature-
accelerated dynamics’, Mat. Res. Soc. Symp. Proc. 538, 427–439.

P. Walters (1982), An Introduction to Ergodic Theory, Vol. 79 of Graduate Texts
in Mathematics, Springer.

G. A. Worth and M. A. Robb (2002), ‘Applying direct molecular dynamics to
non-adiabatic systems’, Adv. Chem. Phys. 124, 355–431.

H. Yserentant (2003), On the electronic Schrödinger equation, Lecture Notes, Uni-
versität Tübingen.
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